Arithmetic Progression

Practice Set 3.1

Q. 1 A. Which of the following sequences are A.P.? If they are A.P. find the common difference.
$2,4,6,8, \ldots$
Answer :
$2,4,6,8, \ldots$
Here, the first term, $\mathrm{a}_{1}=2$
Second term, $\mathrm{a}_{2}=4$
$\mathrm{a}_{3}=6$
Now, common difference $=\mathrm{a}_{2}-\mathrm{a}_{1}=4-2=2$
Also, $\mathrm{a}_{3}-\mathrm{a}_{2}=6-4=2$
Since, the common difference is same.
Hence the terms are in Arithmetic progression with common difference, $\mathrm{d}=2$.
Q. 1 B. Which of the following sequences are A.P.? If they are A.P. find the common difference.
$2, \frac{5}{2}, 3, \frac{7}{3}, \ldots$
Answer:
$2, \frac{5}{2}, 3, \frac{7}{3}, \ldots \ldots$
Here, the first term, $\mathrm{a}_{1}=2$

Second term, $\mathrm{a}_{2}=\frac{5}{2}$

Third Term, $a_{3}=3$

Now, common difference $=a_{2}-a_{1}=\frac{5}{2}-2=\frac{5-4}{2}=\frac{1}{2}$

Also, $\mathrm{a}_{3}-\mathrm{a}_{2}=3-\frac{5}{2}=\frac{6-5}{2}=\frac{1}{2}$
Since, the common difference is same.
Hence the terms are in Arithmetic progression with common difference, $d=\frac{1}{2}$.
Q. 1 C. Which of the following sequences are A.P.? If they are A.P. find the common difference.
$-10,-6,-2,2, \ldots$
Answer :
$-10,-6,-2,2, \ldots$
Here, the first term, $\mathrm{a}_{1}=-10$
Second term, $\mathrm{a}_{2}=-6$
$\mathrm{a}_{3}=-2$
Now, common difference $=\mathrm{a}_{2}-\mathrm{a}_{1}=-6-(-10)=-6+10=4$
Also, $\mathrm{a}_{3}-\mathrm{a}_{2}=-2-(-6)=-2+6=4$
Since, the common difference is same.
Hence the terms are in Arithmetic progression with common difference, $\mathrm{d}=4$.
Q. 1 D. Which of the following sequences are A.P.? If they are A.P. find the common difference.
$0.3,0.33, .0333, \ldots$

Answer :

$0.3,0.33,0.333, \ldots$.

Here, the first term, $\mathrm{a}_{1}=0.3$
Second term, $\mathrm{a}_{2}=0.33$
$\mathrm{a}_{3}=0.333$

Now, common difference $=\mathrm{a}_{2}-\mathrm{a}_{1}=0.33-0.3=0.03$
Also, $\mathrm{a}_{3}-\mathrm{a}_{2}=0.333-0.33=0.003$
Since, the common difference is not same.
Hence the terms are not in Arithmetic progression
Q. 1 E. Which of the following sequences are A.P. ? If they are A.P. find the common difference.
$0,-4,-8,-12, \ldots$

Answer :

$0,-4,-8,-12, \ldots$
Here, the first term, $\mathrm{a}_{1}=0$
Second term, $\mathrm{a}_{2}=-4$
$\mathrm{a}_{3}=-8$
Now, common difference $=\mathrm{a}_{2}-\mathrm{a}_{1}=-4-0=-4$

Also, $\mathrm{a}_{3}-\mathrm{a}_{2}=-8-(-4)=-8+4=-4$
Since, the common difference is same.
Hence the terms are in Arithmetic progression with common difference, $d=-4$.
Q. 1 F. Which of the following sequences are A.P. ? If they are A.P. find the common difference.
$-\frac{1}{5},-\frac{1}{5},-\frac{1}{5}, \ldots$

Answer:

$-\frac{1}{5},-\frac{1}{5},-\frac{1}{5}, \ldots$.

Here, the first term, $\mathrm{a}_{1}=-\frac{1}{5}$

Second term, $\mathrm{a}_{2}=-\frac{1}{5}$

$$
a_{3}=-\frac{1}{5}
$$

Now, common difference $=a_{2}-a_{1}=-\frac{1}{5}-\left(-\frac{1}{5}\right)=-\frac{1}{5}+\frac{1}{5}=0$

$$
\text { Also, }=\mathrm{a}_{3}-\mathrm{a}_{2}=-\frac{1}{5}-\left(-\frac{1}{5}\right)=-\frac{1}{5}+\frac{1}{5}=0
$$

Since, the common difference is same.
Hence the terms are in Arithmetic progression with common difference, $d=0$.
Q. 1 G. Which of the following sequences are A.P. ? If they are A.P. find the common difference.
$3,3+\sqrt{2}, 3+2 \sqrt{2}, 3+3 \sqrt{2}, \ldots$
Answer :
$3,3+\sqrt{ } 2,3+2 \sqrt{ } 2,3+3 \sqrt{ } 2, \ldots$
Here, the first term, $\mathrm{a}_{1}=3$
Second term, $\mathrm{a}_{2}=3+\sqrt{ } 2$
$\mathrm{a}_{3}=3+2 \sqrt{ } 2$
Now, common difference $=\mathrm{a}_{2}-\mathrm{a}_{1}=3+\sqrt{ } 2-3=\sqrt{ } 2$
Also, $\mathrm{a}_{3}-\mathrm{a}_{2}=3+2 \sqrt{ } 2-(3+\sqrt{ } 2)=3+2 \sqrt{ } 2-3-\sqrt{ } 2=\sqrt{ } 2$
Since, the common difference is same.
Hence the terms are in Arithmetic progression with common difference, $d=\sqrt{ } 2$.
Q. 1 H . Which of the following sequences are A.P.? If they are A.P. find the common difference.

127, 132, 137, ..
Answer: 127, 132, 137, . .
Here, the first term, $a_{1}=127$
Second term, $\mathrm{a} 2=132$
$a_{3}=137$
Now, common difference $=\mathrm{a}_{2}-\mathrm{a}_{1}=132-127=5$
Also, $a_{3}-a_{2}=137-132=5$
Since, the common difference is same.
Hence the terms are in Arithmetic progression with common difference, $\mathrm{d}=5$.
Q. 2 A. Write an A.P. whose first term is a and common difference is d in each of the following.
$a=10, d=5$
Answer : $a=10, d=5$
Let $\mathrm{a}_{1}=\mathrm{a}=10$
Since, the common difference $d=5$
Using formula $a_{n+1}=a_{n}+d$
Thus, $\mathrm{a}_{2}=\mathrm{a}_{1}+\mathrm{d}=10+5=15$
$\mathrm{a}_{3}=\mathrm{a}_{2}+\mathrm{d}=15+5=20$
$a_{4}=a_{3}+d=20+5=25$
Hence, An A.P with common difference 5 is $10,15,20,25, \ldots$.
Q. 2 B. Write an A.P. whose first term is a and common difference is d in each of the following.
$a=-3, d=0$
Answer:
$a=-3, d=0$
Let $\mathrm{a}_{1}=\mathrm{a}=-3$
Since, the common difference $d=0$
Using formula $a n+1=a n+d$
Thus, $a_{2}=a_{1}+d=-3+0=-3$
$\mathrm{a}_{3}=\mathrm{a}_{2}+\mathrm{d}=-3+0=-3$
$a_{4}=a_{3}+d=-3+0=-3$
Hence, An A.P with common difference 0 is $-3,-3,-3,-3, \ldots$
Q. 2 C. Write an A.P. whose first term is a and common difference is d in each of the following.

$$
\mathrm{a}=-7, \mathrm{~d}=\frac{1}{2}
$$

Answer :

$a=-7, d=\frac{1}{2}$

Let $\mathrm{a}_{1}=\mathrm{a}=-7$
Since, the common difference $d=\frac{1}{2}$

Using formula $a_{n+1}=a_{n}+d$

Thus, $\mathrm{a}_{2}=\mathrm{a}_{1}+\mathrm{d}=-7+\frac{1}{2}=\frac{-14+1}{2}=-\frac{13}{2}$
$a_{3}=a_{2}+d=-\frac{13}{2}+\frac{1}{2}=\frac{-13+1}{2}=-\frac{12}{2}=-6$
$a_{4}=a_{3}+d=-6+\frac{1}{2}=\frac{-12+1}{2}=-\frac{11}{2}$

Hence, An A.P with common difference $\frac{1}{2}$ is $-7,-\frac{13}{2},-6,-\frac{11}{2}, \ldots .$.
Q. 2 D. Write an A.P. whose first term is a and common difference is d in each of the following.
$a=-1.25, d=3$
Answer : $\mathrm{a}=-1.25, \mathrm{~d}=3$
Let $\mathbf{a}_{1}=\mathbf{a}=-1.25$
Since, the common difference $d=3$
Using formula $a_{n+1}=a_{n}+d$
Thus, $\mathrm{a}_{2}=\mathrm{a}_{1}+\mathrm{d}=-1.25+3=1.75$
$a_{3}=a_{2}+d=1.75+3=4.75$
$\mathrm{a}_{4}=\mathrm{a}_{3}+\mathrm{d}=4.75+3=7.75$
Hence, An A.P with common difference 3 is $-1.25,1.75,4.75,7.75$
Q. 2 E. Write an A.P. whose first term is a and common difference is d in each of the following.
$a=6, d=-3$
Answer :
$a=6, d=-3$
Let $\mathrm{a}_{1}=\mathrm{a}=6$

Since, the common difference $d=-3$
Using formula $a_{n+1}=a_{n}+d$
Thus, $\mathrm{a}_{2}=\mathrm{a}_{1}+\mathrm{d}=6+(-3)=6-3=3$
$\mathrm{a}_{3}=\mathrm{a}_{2}+\mathrm{d}=3+(-3)=3-3=0$
$a_{4}=a_{3}+d=0+(-3)=-3$
Hence, An A.P with common difference -3 is $6,3,0,-3 \ldots$
Q. 2 F. Write an A.P. whose first term is a and common difference is d in each of the following.
$a=-19, d=-4$
Answer :
$a=-19, d=-4$
Let $\mathrm{a}_{1}=\mathrm{a}=-19$

Since, the common difference $d=-4$
Using formula $a_{n+1}=a_{n}+d$
Thus, $\mathrm{a}_{2}=\mathrm{a}_{1}+\mathrm{d}=-19+(-4)=-19-4=-23$
$\mathrm{a}_{3}=\mathrm{a}_{2}+\mathrm{d}=-23+(-4)=-23-4=-27$
$\mathrm{a}_{4}=\mathrm{a}_{3}+\mathrm{d}=-27+(-4)=-27-4=-31$
Hence, An A.P with common difference -4 is $-19,-23,-27,-31, \ldots$
Q. 3 A. Find the first term and common difference for each of the A.P.

5, 1, - 3, - 7, ...
Answer :
$5,1,-3,-7, \ldots$

First term $\mathrm{a}_{1}=5$
Second term $\mathrm{a}_{2}=1$
Third term $\mathrm{a}_{3}=-3$
We know that $d=a_{n+1}-a_{n}$
Thus, $\mathrm{d}=\mathrm{a}_{2}-\mathrm{a}_{1}=1-5=-4$
Hence, the common difference $\mathrm{d}=-4$ and first term is 5
Q. 3 B. Find the first term and common difference for each of the A.P.
$0.6,0.9,1.2,1.5, \ldots$
Answer :
$0.6,0.9,1.2,1.5, \ldots$
First term $\mathrm{a}_{1}=0.6$

Second term $\mathrm{a}_{2}=0.9$
Third term $\mathrm{a}_{3}=1.2$
We know that $d=a_{n+1}-a_{n}$
Thus, $\mathrm{d}=\mathrm{a}_{2}-\mathrm{a}_{1}=0.9-0.6=0.3$
Hence, the common difference $\mathrm{d}=0.3$ and first term is 0.6
Q. 3 C. Find the first term and common difference for each of the A.P.
$127,135,143,151, \ldots$
Answer : 127, 135, 143, 151, . . .
First term $\mathrm{a}_{1}=127$
Second term $\mathrm{a}_{2}=135$
Third term $\mathrm{a}_{3}=143$
We know that $d=a_{n+1}-a_{n}$

Thus, $d=a_{2}-a_{1}=135-127=8$
Hence, the common difference $\mathrm{d}=8$ and first term is 127
Q. 3 D. Find the first term and common difference for each of the A.P.
$\frac{1}{4}, \frac{3}{4}, \frac{5}{4}, \frac{7}{4}, \ldots$

Answer:

$\frac{1}{4}, \frac{3}{4}, \frac{5}{4}, \frac{7}{4}, \ldots$.

First term $\mathrm{a}_{1}=\frac{1}{4}$

Second term $\mathrm{a}_{2}=\frac{3}{4}$

Third term $\mathrm{a}_{3}=\frac{5}{4}$

We know that $d=a_{n+1}-a_{n}$

Thus, $\mathrm{d}=\mathrm{a}_{2}-\mathrm{a}_{1}=\frac{3}{4}-\frac{1}{4}=\frac{2}{4}=\frac{1}{2}$

Hence, the common difference $\mathrm{d}=\frac{1}{2}$ and first term is $\frac{1}{4}$

Practice Set 3.2

Q. 1 A. Write the correct number in the given boxes from the following A. P. $1,8,15,22, \ldots$

Here
$\mathrm{a}=\square, \mathrm{t}_{1}=\square, \mathrm{t}_{2}=\square, \mathrm{t}_{3}=\square$,
$\mathrm{t}_{2}-\mathrm{t}_{1}=\square-\square=\square$
$\mathrm{t}_{3}-\mathrm{t}_{2}=\square-\square=\square \therefore \mathrm{d}=\square$

Answer :

$1,8,15,22, \ldots$
First term $\mathrm{a}=1$
Second term $\mathrm{t}_{1}=8$
Third term $\mathrm{t}_{2}=15$
Fourth term $\mathrm{t}_{3}=22$
We know that $\mathrm{d}=\mathrm{t}_{\mathrm{n}+1}-\mathrm{t}_{\mathrm{n}}$
Thus, $\mathrm{t}_{2}-\mathrm{t}_{1}=15-8=7$
$\mathrm{t}_{3}-\mathrm{t}_{2}=22-15=7$
Thus, $\mathrm{d}=7$
Q. 1 B. Write the correct number in the given boxes from the following A. P.
$3,6,9,12, \ldots$
Here $\mathrm{t}_{1}=\square, \mathrm{t}_{2}=\square, \mathrm{t}_{3}=\square, \mathrm{t}_{4}=\square$,
$\mathrm{t}_{2}-\mathrm{t}_{1}=\square, \mathrm{t}_{3}-\mathrm{t}_{2}=\square$
$\therefore \mathrm{d}=\square$
Answer: 3,6,9,12, ...
First term $\mathrm{a}=3$
Second term $\mathrm{t}_{1}=6$
Third term $\mathrm{t}_{2}=9$

Fourth term $\mathrm{t}_{3}=12$
We know that $d=t_{n+1}-t_{n}$
Thus, $\mathrm{t}_{2}-\mathrm{t}_{1}=9-6=3$
$t_{3}-t_{2}=12-9=3$
Thus, $d=3$
Q. 1 C. Write the correct number in the given boxes from the following A. P.
$-3,-8,-13,-18, \ldots$
Here $\mathrm{t}_{3}=\square, \mathrm{t}_{2}=\square, \mathrm{t}_{4}=\square, \mathrm{t}_{1}=\square$,
$\mathrm{t}_{2}-\mathrm{t}_{1}=\square, \mathrm{t}_{3}-\mathrm{t}_{2}=\square$
$\therefore \mathrm{a}=\square, \mathrm{d}=\square$

Answer: $-3,-8,-13,-18, \ldots$
First term $\mathrm{a}=-3$
Second term $\mathrm{t}_{1}=-8$
Third term t2 $=-13$
Fourth term $\mathrm{t}_{3}=-18$
We know that $d=t_{n+1}-t_{n}$
Thus, $\mathrm{t}_{2}-\mathrm{t}_{1}=-13-(-8)=-13+8=-5$
$t_{3}-t_{2}=-18-(-13)=-18+13=-5$
Thus, $d=-5$

Q. 1 D. Write the correct number in the given boxes from the following A. P.

$70,60,50,40, \ldots$
Here $\mathrm{t}_{1}=\square, \mathrm{t}_{2}=\square, \mathrm{t}_{3}=\square, \ldots$
$\therefore \mathrm{a}=\square, \mathrm{d}=\square$

Answer : 70, 60, 50, 40, . .
First term $\mathrm{a}=70$
Second term $\mathrm{t}_{1}=60$

Third term $\mathrm{t}_{2}=50$
Fourth term $\mathrm{t}_{3}=40$
We know that $d=t_{n+1}-t_{n}$
Thus, $\mathrm{t}_{2}-\mathrm{t}_{1}=50-60=-10$
$t_{3}-t_{2}=40-50=-10$
Thus, $\mathrm{d}=-10$
Q. 2. Decide whether following sequence is an A.P., if so find the 20th term of the progression.
$-12,-5,2,9,16,23,30, \ldots$
Answer : Given A.P. is $-12,-5,2,9,16,23,30, \ldots$
Where first term $\mathrm{a}=-12$
Second term $t_{1}=-5$

Third term $\mathrm{t}_{2}=2$
Common Difference $d=t_{2}-t_{1}=2-(-5)=2+5=7$
We know that, $\mathrm{n}^{\text {th }}$ term of an A.P. is
$t_{n}=a+(n-1) d$

We need to find the $20^{\text {th }}$ term,
Here $\mathrm{n}=20$
Thus, $\mathrm{t} 20=-12+(20-1) \times 7$
$\mathrm{t}_{20}=-12+(19) \times 7=-12+133=121$
Thus, $\mathrm{t}_{20}=121$
Q. 3. Given Arithmetic Progression 12, 16, 20, 24, . . . Find the 24th term of this progression.

Answer : Given A.P. is $12,16,20,24, \ldots$
Where first term $\mathrm{a}=12$
Second term $\mathrm{t}_{1}=16$
Third term $\mathrm{t}_{2}=20$
Common Difference $\mathrm{d}=\mathrm{t}_{2}-\mathrm{t}_{1}=20-16=4$
We know that, $\mathrm{n}^{\text {th }}$ term of an A.P. is
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
We need to find the $24^{\text {th }}$ term,
Here $\mathrm{n}=24$
Thus, $\mathrm{t}_{24}=12+(24-1) \times 4$
$\mathrm{t}_{24}=12+(23) \times 4=12+92=104$
Thus, $\mathrm{t}_{24}=104$
Q. 4. Find the 19 th term of the following A.P.
$7,13,19,25, \ldots$
Answer : Given A.P. is $7,13,19,25, \ldots$
Where first term $\mathrm{a}=7$
Second term $\mathrm{t}_{1}=13$

Third term t2 $=19$
Common Difference $d=t_{2}-t_{1}=19-13=6$
We know that, $\mathrm{n}^{\text {th }}$ term of an A.P. is
$t_{n}=a+(n-1) d$
We need to find the $19^{\text {th }}$ term,
Here $\mathrm{n}=19$
Thus, $\mathrm{t}_{19}=7+(19-1) \times 6$
$t_{19}=7+(18) \times 6=7+108=115$
Thus, $\mathrm{t}_{19}=115$

Q. 5. Find the 27 th term of the following A.P.

$9,4,-1,-6,-11, \ldots$

Answer : Given A.P. is $9,4,-1,-6,-11, \ldots$
Where first term $\mathrm{a}=9$

Second term $\mathrm{t}_{1}=4$

Third term t2 $=-1$
Common Difference $d=t_{2}-t_{1}=-1-4=-5$
We know that, $\mathrm{n}^{\text {th }}$ term of an A.P. is
$t_{n}=a+(n-1) d$

We need to find the $27^{\text {th }}$ term,
Here $\mathrm{n}=27$
Thus, $\mathrm{t}_{27}=9+(27-1) \times(-5)$
$t_{27}=9+(26) \times(-5)=9-130=-121$
Thus, $\mathrm{t}_{27}=-121$

Q. 6. Find how many three digit natural numbers are divisible by 5 .

Answer : List of three digit number divisible by 5 are
100, 105,110,115, 995

Let us find how many such number are there?
From the above sequence, we know that
$t_{n}=995, a=100$
$t_{1}=105, t_{2}=110$
Thus, $d=t_{2}-t_{1}=110-105=5$
Now, By using $\mathrm{n}^{\text {th }}$ term of an A.P. formula
$t_{n}=a+(n-1) d$
we can find value of " n "

Thus, on substituting all the value in formula we get,
$995=100+(n-1) \times 5$
$\Rightarrow 995-100=(\mathrm{n}-1) \times 5$
$\Rightarrow 895=(\mathrm{n}-1) \times 5$
$\Rightarrow \mathrm{n}-1=\frac{895}{5}=179$
$\Rightarrow \mathrm{n}=179+1=180$
Q. 7. The $11^{\text {th }}$ term and the 21 st term of an A.P. are 16 and 29 respectively, then find the 41th term of that A.P.

Answer : Given: $\mathrm{t}_{11}=16$ and $\mathrm{t}_{21}=29$
To find: t_{41}

Using $\mathrm{n}^{\text {th }}$ term of an A.P. formula
$t_{n}=a+(n-1) d$
we will find value of "a" and "d"
Let, $\mathrm{t}_{11}=\mathrm{a}+(11-1) \mathrm{d}$
$\Rightarrow 16=a+10 d$
$\mathrm{t}_{21}=\mathrm{a}+(21-1) \mathrm{d}$
$\Rightarrow 29=a+20 d$
Subtracting eq. (1) from eq. (2), we get,
$\Rightarrow 29-16=(a-a)+(20 d-10 d)$
$\Rightarrow 13=10 \mathrm{~d}$
$\Rightarrow d=\frac{13}{10}=1.3$
Substitute value of "d" in eq. (1) to get value of "a"
$\Rightarrow 16=\mathrm{a}+10 \times \frac{13}{10}$
$\Rightarrow 16=a+13$
$\Rightarrow \mathrm{a}=16-13=3$
Now, we will find the value of t_{41} using $\mathrm{n}^{\text {th }}$ term of an A.P. formula
$\Rightarrow \mathrm{t}_{41}=3+(41-1) \times \frac{13}{10}$
$\Rightarrow \mathrm{t}_{41}=3+40 \times \frac{13}{10}$
$\Rightarrow t_{41}=3+4 \times 13=3+52=55$
Thus, $\mathrm{t}_{41}=55$
Q. $8.11,8,5,2, \ldots$ In this A.P. which term is number -151 ?

Answer : By, given A.P. 11, 8, 5, 2, ...
we know that
$a=11, t_{1}=8, t_{2}=5$
Thus, $\mathrm{d}=\mathrm{t}_{2}-\mathrm{t}_{1}=5-8=-3$

Given: $\mathrm{t}_{\mathrm{n}}=-151$
Now, By using $\mathrm{n}^{\text {th }}$ term of an A.P. formula
$t_{n}=a+(n-1) d$
we can find value of " n "
Thus, on substituting all the value in formula we get,
$-151=11+(n-1) \times(-3)$
$\Rightarrow-151-11=(\mathrm{n}-1) \times(-3)$
$\Rightarrow-162=(\mathrm{n}-1) \times(-3)$
$\Rightarrow \mathrm{n}-1=\frac{-162}{-3}=54$
$\Rightarrow \mathrm{n}=54+1=55$
Q. 9. In the natural numbers from 10 to 250 , how many are divisible by $\mathbf{4 ?}$

Answer : List of number divisible by 4 in between 10 to 250 are
$12,16,20,24, \ldots \ldots \ldots . . .248$
Let us find how many such number are there?
From the above sequence, we know that
$t_{n}=248, a=12$
$t_{1}=16, t_{2}=20$
Thus, $d=t_{2}-t_{1}=20-16=4$
Now, By using $\mathrm{n}^{\text {th }}$ term of an A.P. formula
$t_{n}=a+(n-1) d$
we can find value of " n "

Thus, on substituting all the value in formula we get,
$248=12+(n-1) \times 4$
$\Rightarrow 248-12=(\mathrm{n}-1) \times 4$
$\Rightarrow 236=(\mathrm{n}-1) \times 4$
$\Rightarrow \mathrm{n}-1=\frac{236}{4}=59$
$\Rightarrow \mathrm{n}=59+1=60$
Q. 10. In an A.P. $17^{\text {th }}$ term is 7 more than its $10^{\text {th }}$ term. Find the common difference.

Answer :

Given: $\mathrm{t}_{17}=7+\mathrm{t}_{10}$

In ti7, $\mathrm{n}=17$
In $\mathrm{t}_{10}, \mathrm{n}=10$
By using $\mathrm{n}^{\text {th }}$ term of an A.P. formula,
$t_{n}=a+(n-1) d$
where $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$d=$ common difference
$\mathrm{t}_{\mathrm{n}}=\mathrm{n}^{\text {th }}$ term
Thus, on using formula in eq. (1) we get,
$\Rightarrow a+(17-1) d=7+(a+(10-1) d)$
$\Rightarrow a+16 d=7+(a+9 d)$
$\Rightarrow a+16 d-a-9 d=7$
$\Rightarrow 7 \mathrm{~d}=7$
$\Rightarrow d=\frac{7}{7}=1$
Thus, common difference " d " = 1

Practice Set 3.3

Q. 1. First term and common difference of an A.P. are 6 and 3 respectively ; find S27.
$a=6, d=3, S_{27}=?$
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[\square+(\mathrm{n}-1) \mathrm{d}]$
$\mathrm{S}_{27}=\frac{27}{2}[12+(27-1) \square]$
$=\frac{27}{2} \times \square$
$=27 \times 45=\square$

Answer :

Given: First term $\mathrm{a}=6$
Common Difference d=3

To find: S27 where $\mathrm{n}=27$
By using sum of $n^{\text {th }}$ term of an A.P. is
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
Where, $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$d=$ common difference
$S_{n}=$ sum of n terms

Thus, Substituting given value in formula we can find the value of S_{27}
$\Rightarrow S_{27}=\frac{27}{2}[2 \times 6+(27-1) \times 3]$
$\Rightarrow \mathrm{S}_{27}=\frac{27}{2}[12+26 \times 3]$
$\Rightarrow S_{27}=\frac{27}{2}[12+78]$
$\Rightarrow S_{27}=\frac{27}{2} \times 90=27 \times 45=1215$
Thus, $\mathrm{S}_{27}=1215$

Q. 2. Find the sum of first 123 even natural numbers.

Answer : List of first 123 even natural number is
$2,4,6, \ldots \ldots$.
Where first term $\mathrm{a}=2$
Second term $\mathrm{t}_{1}=4$
Third term t2 $=6$
Thus, common difference $d=t_{2}-t_{1}=6-4=2$
$\mathrm{n}=123$
By using sum of $n^{\text {th }}$ term of an A.P. is
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
Where, $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$d=$ common difference
$S_{n}=$ sum of n terms

Thus, Substituting given value in formula we can find the value of S_{n}
$\Rightarrow \mathrm{S}_{\mathrm{n}}=\frac{123}{2}[2 \times 2+(123-1) \times 2]$
$\Rightarrow S_{n}=\frac{123}{2}[4+122 \times 2]$
$\Rightarrow S_{n}=\frac{123}{2}[4+244]$
$\Rightarrow S_{n}=\frac{123}{2} \times 248=123 \times 122=15252$
Thus, $S_{n}=15252$

Q. 3. Find the sum of all even numbers from 1 to 350 .

Answer : List of even natural number between 1 to 350 is
$2,4,6, \ldots \ldots .348$
Where first term $\mathrm{a}=2$
Second term $\mathrm{t}_{1}=4$
Third term t2 $=6$
Thus, common difference $d=t_{2}-t_{1}=6-4=2$
$t_{n}=348$ (As we have to find the sum of even numbers between 1 and 350 therefore excluding 350)

Now, By using $\mathrm{n}^{\text {th }}$ term of an A.P. formula
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
where $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$d=$ common difference
$\mathrm{t}_{\mathrm{n}}=\mathrm{n}^{\text {th }}$ terms
we can find value of " n " by substituting all the value in formula we get,
$\Rightarrow 348=2+(n-1) \times 2$
$\Rightarrow 348-2=2(n-1)$
$\Rightarrow 346=2(\mathrm{n}-1)$
$\Rightarrow \mathrm{n}-1=\frac{346}{2}=173$
$\Rightarrow \mathrm{n}=173+1=174$
Now, By using sum of $n^{\text {th }}$ term of an A.P. we will find it's sum
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
Where, $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$d=$ common difference
$S_{n}=$ sum of n terms
Thus, Substituting given value in formula we can find the value of S_{n}
$\Rightarrow S_{174}=\frac{174}{2}[2 \times 2+(174-1) \times 2]$
$\Rightarrow S_{174}=\frac{174}{2}[4+173 \times 2]$
$\Rightarrow S_{174}=\frac{174}{2}[4+346]$
$\Rightarrow S_{174}=\frac{174}{2} \times 350=174 \times 175=30,450$
Thus, $\mathrm{S}_{174}=30,450$
Q. 4. In an A.P. 19th term is 52 and 38 th term is $\mathbf{1 2 8}$, find sum of first 56 terms.

Answer : Given: $\mathrm{t}_{19}=52$ and $\mathrm{t}_{38}=128$

To find: value of "a" and "d"
Using $n^{\text {th }}$ term of an A.P. formula
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
where $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$\mathrm{d}=$ common difference
$\mathrm{t}_{\mathrm{n}}=\mathrm{n}^{\text {th }}$ terms
we will find value of "a" and "d"
Let, $\mathrm{t}_{19}=\mathrm{a}+(19-1) \mathrm{d}$
$\Rightarrow 52=\mathrm{a}+18 \mathrm{~d}$
$t_{38}=a+(38-1) d$
$\Rightarrow 128=a+37 d$
Subtracting eq. (1) from eq. (2), we get,
$\Rightarrow 128-52=(a-a)+(37 d-18 d)$
$\Rightarrow 76=19 \mathrm{~d}$
$\Rightarrow d=\frac{76}{19}=4$
Substitute value of "d" in eq. (1) to get value of "a"
$\Rightarrow 52=a+18 \times 4$
$\Rightarrow 52=\mathrm{a}+72$
$\Rightarrow \mathrm{a}=52-72=-20$
Now, to find value of S_{56} we will using formula of sum of n terms
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
Where, $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$\mathrm{d}=$ common difference
$S_{n}=$ sum of n terms
Thus, Substituting given value in formula we can find the value of S_{n}
$\Rightarrow \mathrm{S}_{56}=\frac{56}{2}[2 \times(-20)+(56-1) \times 4]$
$\Rightarrow S_{56}=28 \times[-40+55 \times 4]$
$\Rightarrow S_{56}=28 \times[-40+220]$
$\Rightarrow S_{56}=28 \times 180=5040$
Thus, $\mathrm{S}_{56}=5040$
Q. 5. Complete the following activity to find the sum of natural numbers from 1 to 140 which are divisible by 4.

From 1 to 140 , natural numbers divisible by 4

Sum of numbers from 1 to 140 , which are divisible by $4=$ \square

Answer : List of natural number divisible by 4 between 1 to 140 is
$4,8,12, \ldots \ldots .136$
Where first term $\mathrm{a}=4$
Second term $\mathrm{t}_{1}=8$
Third term $\mathrm{t}_{2}=12$
Thus, common difference $d=t_{2}-t_{1}=12-8=4$
$t_{n}=136$
Now, By using $\mathrm{n}^{\text {th }}$ term of an A.P. formula
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
where $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$d=$ common difference
$\mathrm{t}_{\mathrm{n}}=\mathrm{n}^{\text {th }}$ terms
we can find value of " n " by substituting all the value in formula we get,
$\Rightarrow 136=4+(\mathrm{n}-1) \times 4$
$\Rightarrow 136-4=4(n-1)$
$\Rightarrow 132=4(n-1)$
$\Rightarrow \mathrm{n}-1=\frac{132}{4}=33$
$\Rightarrow \mathrm{n}=33+1=34$
Now, By using sum of $n^{\text {th }}$ term of an A.P. we will find it's sum
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
Where, $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$d=$ common difference
$S_{n}=$ sum of n terms
Thus, Substituting given value in formula we can find the value of S_{34}
$\Rightarrow \mathrm{S}_{34}=\frac{34}{2}[2 \times 4+(34-1) \times 4]$
$\Rightarrow S_{34}=17 \times[8+33 \times 4]$
$\Rightarrow S_{34}=17 \times[8+132]$
$\Rightarrow S_{34}=17 \times 140=2380$
Thus, $\mathrm{S}_{34}=2380$
Q. 6. Sum of first 55 terms in an A.P. is 3300, find its 28th term.

Answer :
Given: $\mathrm{S}_{55}=3300$ where $\mathrm{n}=55$
Now, By using sum of $n^{\text {th }}$ term of an A.P. we will find it's sum
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
Where, $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$\mathrm{d}=$ common difference
$S_{n}=$ sum of n terms
Thus, on substituting the given value in formula we get,
$\Rightarrow S_{55}=\frac{55}{2}[2 a+(55-1) d]$
$\Rightarrow 3300=\frac{55}{2}[2 a+54 d]$

$$
\begin{align*}
& \Rightarrow 3300=\frac{55}{2} \times 2 \times[a+27 d] \\
& \Rightarrow 3300=55 \times[a+27 d] \\
& \Rightarrow \frac{3300}{55}=a+27 d \\
& \Rightarrow a+27 d=60 \ldots \ldots(1) \tag{1}
\end{align*}
$$

We need to find value of $28^{\text {th }}$ term i.e t28
Now, By using $\mathrm{n}^{\text {th }}$ term of an A.P. formula
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
where $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$d=$ common difference
$\mathrm{t}_{\mathrm{n}}=\mathrm{n}^{\text {th }}$ terms
we can find value of t28 by substituting all the value in formula we get,
$\Rightarrow t_{28}=a+(28-1) d$
$\Rightarrow \mathrm{t} 28=\mathrm{a}+27 \mathrm{~d}$

From eq. (1) we get,
$\Rightarrow \mathrm{t}_{28}=\mathrm{a}+27 \mathrm{~d}=60$
$\Rightarrow \mathrm{t}_{28}=60$
Q. 7. In an A.P. sum of three consecutive terms is 27 and their product is 504 find the terms? (Assume that three consecutive terms in A.P. are a-d, a, a + d.)

Answer :

Let the first term be a-d
the second term be a
the third term be $a+d$
Given: sum of consecutive three term is 27
$\Rightarrow(\mathrm{a}-\mathrm{d})+\mathrm{a}+(\mathrm{a}+\mathrm{d})=27$
$\Rightarrow 3 \mathrm{a}=27$
$\Rightarrow \mathrm{a}=\frac{27}{3}=9$
Also, Given product of three consecutive term is 504
$\Rightarrow(a-d) \times a \times(a+d)=504$
$\Rightarrow(9-d) \times 9 \times(9+d)=504($ since, $a=9)$
$\Rightarrow(9-\mathrm{d}) \times(9+\mathrm{d})=\frac{504}{9}=56$
$\Rightarrow 9^{2}-d^{2}=56\left(\right.$ since, $\left.(a-b)(a+b)=a^{2}-b^{2}\right)$
$\Rightarrow 81-d^{2}=56$
$\Rightarrow d^{2}=81-56=25$
$\Rightarrow d=\sqrt{ } 25= \pm 5$

Case 1:

Thus, if $\mathrm{a}=9$ and $\mathrm{d}=5$
Then the three terms are,
First term $a-d=9-5=4$
Second term $\mathrm{a}=9$
Third term $\mathrm{a}+\mathrm{d}=9+5=14$
Thus, the A.P. is $4,9,14$

Case 2:

Thus, if $\mathrm{a}=9$ and $\mathrm{d}=-5$

Then the three terms are,
First term $a-d=9-(-5)=9+5=14$
Second term a = 9

Third term $\mathrm{a}+\mathrm{d}=9+(-5)=9-5=4$
Thus, the A.P. is $14,9,4$
Q. 8. Find four consecutive terms in an A.P. whose sum is 12 and sum of 3rd and 4th term is 14.
(Assume the four consecutive terms in A.P. are a-d, a, a + d, a + 2d.)
Answer : Let the first term be a - d
the second term be a
the third term be $a+d$
the fourth term be $a+2 d$

Given: sum of consecutive four term is 12
$\Rightarrow(\mathrm{a}-\mathrm{d})+\mathrm{a}+(\mathrm{a}+\mathrm{d})+(\mathrm{a}+2 \mathrm{~d})=12$
$\Rightarrow 4 \mathrm{a}+2 \mathrm{~d}=12$
$\Rightarrow 2(2 a+d)=12$
$\Rightarrow 2 \mathrm{a}+\mathrm{d}=\frac{12}{2}=6$
$\Rightarrow 2 \mathrm{a}+\mathrm{d}=6$
Also, sum of third and fourth term is 14
$\Rightarrow(\mathrm{a}+\mathrm{d})+(\mathrm{a}+2 \mathrm{~d})=14$
$\Rightarrow 2 \mathrm{a}+3 \mathrm{~d}=14$
Subtracting eq. (1) from eq. (2) we get,
$\Rightarrow(2 a+3 d)-(2 a+d)=14-6$
$\Rightarrow 2 a+3 d-2 a-d=8$
$\Rightarrow 2 \mathrm{~d}=8$
$\Rightarrow d=\frac{8}{2}=4$
$\Rightarrow d=4$
Substituting value of " d " in eq. (1) we get,
$\Rightarrow 2 \mathrm{a}+4=6$
$\Rightarrow 2 \mathrm{a}=6-4=2$
$\Rightarrow \mathrm{a}=\frac{2}{2}=1$
$\Rightarrow a=1$
Thus, $\mathrm{a}=1$ and $\mathrm{d}=4$
Hence, first term $a-d=1-4=-3$
the second term $\mathrm{a}=1$
the third term $a+d=1+4=5$
the fourth term $a+2 d=1+2 \times 4=1+8=9$
Thus, the A.P. is $-3,1,5,9$
Q. 9. If the 9th term of an A.P. is zero then show that the $29^{\text {th }}$ term is twice the $19^{\text {th }}$ term.

Answer: Now, By using $\mathrm{n}^{\text {th }}$ term of an A.P. formula
$t_{n}=a+(n-1) d$
where $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$d=$ common difference
$\mathrm{t}_{\mathrm{n}}=\mathrm{n}^{\text {th }}$ terms

Given: $\mathrm{t} 9=0$
$\Rightarrow \mathrm{t} 9=\mathrm{a}+(9-1) \mathrm{d}$
$\Rightarrow 0=a+8 d$
$\Rightarrow \mathrm{a}=-8 \mathrm{~d}$
To Show: $\mathrm{t}_{29}=2 \times \mathrm{t}_{19}$
Now,
$\Rightarrow \mathrm{t}_{29}=\mathrm{a}+(29-1) \mathrm{d}$
$\Rightarrow \mathrm{t} 29=\mathrm{a}+28 \mathrm{~d}$
$\Rightarrow t_{29}=-8 d+28 d=20 d($ since,$a=-8 d)$
$\Rightarrow \mathrm{t}_{29}=20 \mathrm{~d}$
$\Rightarrow \mathrm{t}_{29}=2 \times 10 \mathrm{~d}$
Also,
$\Rightarrow \mathrm{t}_{19}=\mathrm{a}+(19-1) \mathrm{d}$
$\Rightarrow \mathrm{t} 19=\mathrm{a}+18 \mathrm{~d}$
$\Rightarrow t_{19}=-8 d+18 d=10 d($ since,$a=-8 d)$
$\Rightarrow \mathrm{t}_{19}=10 \mathrm{~d}$
From eq. (1) and eq. (2) we get,
$t_{29}=2 \times t_{19}$

Practice Set 3.4

Q. 1. On $1^{\text {st }}$ Jan 2016, Sanika decides to save ₹ 10 , ₹ 11 on second day, ₹ 12 on third day. If she decides to save like this, then on 31 st Dec 2016 what would be her total saving?

Answer : By given information we can form an A.P.
$10,11,12,13, \ldots \ldots$

Hence, the first term $a=10$
Second term $t_{1}=11$
Third term $\mathrm{t}_{2}=12$
Thus, common difference $d=t_{2}-t_{1}=12-11=1$
Here, number of terms from $1^{\text {st }}$ Jan 2016 to $31^{\text {st }}$ Dec 2016 is,
$\mathrm{n}=366$
We need to find S_{366}
Now, By using sum of $n^{\text {th }}$ term of an A.P. we will find it's sum
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
Where, $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$\mathrm{d}=$ common difference
$S_{n}=$ sum of n terms
Thus, on substituting the given value in formula we get,
$\Rightarrow S_{366}=\frac{366}{2}[2 \times 10+(366-1) \times 1]$
$\Rightarrow S_{366}=183[20+365]$
$\Rightarrow S_{366}=183 \times 385$
$\Rightarrow S_{366}=$ Rs 70,455
Q. 2. A man borrows ₹ 8000 and agrees to repay with a total interest of $₹ 1360$ in 12 monthly instalments. Each instalment being less than the preceding one by ₹ 40. Find the amount of the first and last instalment.

Answer : Given: A man borrows = Rs. 8000
Repay with total interest = Rs 1360

In 12 months, thus $\mathrm{n}=12$
Thus, $S_{12}=8000+1360=9360$
Each installment being less than preceding one
Thus, $\mathrm{d}=-40$
We need to find "a"

Now, By using sum of $n^{\text {th }}$ term of an A.P. we will find it's sum
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
Where, $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$\mathrm{d}=$ common difference
$S_{n}=$ sum of n terms
Thus, on substituting the given value in formula we get,
$\Rightarrow \mathrm{S}_{12}=\frac{12}{2}[2 \mathrm{a}+(12-1) \times(-40)]$
$\Rightarrow 9360=6[2 \mathrm{a}-11 \times 40]$
$\Rightarrow \frac{9360}{6}=2 a-440$
$\Rightarrow 1560=2 a-440$
$\Rightarrow 1560+440=2 \mathrm{a}$
$\Rightarrow 2 \mathrm{a}=2000$
$\Rightarrow \mathrm{a}=\frac{2000}{2}=1000$
Thus, first installment a = Rs. 1000
Now, By using sum of $n^{\text {th }}$ term of an A.P. we will find it's sum
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}$ [first term + last term]
Where, $\mathrm{n}=\mathrm{no}$. of terms
$\mathrm{S}_{\mathrm{n}}=$ sum of n terms
Thus, on substituting the given value in formula we get,
Let $\mathrm{a}=$ first term, $\mathrm{t}_{\mathrm{n}}=$ last term
$\Rightarrow \mathrm{S}_{12}=\frac{12}{2}\left[\mathrm{a}+\mathrm{t}_{\mathrm{n}}\right]$
$\Rightarrow 9360=6\left[1000+\mathrm{t}_{\mathrm{n}}\right]$
$\Rightarrow 1000+\mathrm{t}_{\mathrm{n}}=\frac{9360}{6}=1560$
$\Rightarrow \mathrm{t}_{\mathrm{n}}=1560-1000=560$
Thus, last installment $\mathrm{t}_{\mathrm{n}}=560$
Q. 3. Sachin invested ina national saving certificate scheme. In the first year he invested ₹ 5000 , in the second year ₹ 7000, in the third year ₹ 9000 and so on. Find the total amount that he invested in 12 years.

Answer : By given information we can form an A.P.
5000, 7000, 9000,
Hence, the first term $\mathrm{a}=5000$
Second term $\mathrm{t}_{1}=7000$
Third term $\mathrm{t}_{2}=9000$
Thus, common difference $d=t_{2}-t_{1}=9000-7000=2000$
Here, number of terms $\mathrm{n}=12$
We need to find S_{12}
Now, By using sum of $\mathrm{n}^{\text {th }}$ term of an A.P. we will find it's sum
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
Where, $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
d = common difference
$\mathrm{S}_{\mathrm{n}}=\mathrm{sum}$ of n terms
Thus, on substituting the given value in formula we get,
$\Rightarrow \mathrm{S}_{12}=\frac{12}{2}[2 \times 5000+(12-1) \times 2000]$
$\Rightarrow S_{12}=6 \times[10,000+11 \times 2000]$
$\Rightarrow S_{12}=6 \times[10,000+22,000]$
$\Rightarrow S_{12}=6 \times 32,000$
$\Rightarrow S_{12}=$ Rs. 192000
Q. 4. There is an auditorium with 27 rows of seats. There are $\mathbf{2 0}$ seats in the first row, 22 seats in the second row, 24 seats in the third row and so on. Find the number of seats in the 15th row and also find how many total seats are there in the auditorium?

Answer : Given: first term a = 20
Second term $\mathrm{t}_{1}=22$
Third term $\mathrm{t}_{2}=24$
Common difference $d=t_{2}-t_{1}=24-22=2$
We need to find t_{15} thus $\mathrm{n}=15$
Now, By using $\mathrm{n}^{\text {th }}$ term of an A.P. formula
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
where $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$\mathrm{d}=$ common difference
$\mathrm{t}_{\mathrm{n}}=\mathrm{n}^{\text {th }}$ terms
On substituting all value in $\mathrm{n}^{\text {th }}$ term of an A.P.
$\Rightarrow t 15=20+(15-1) \times 2$
$\Rightarrow t_{15}=20+14 \times 2$
$\Rightarrow \mathrm{t} 15=20+28=48$
We have been given that, there are 27 rows in an auditorium
Thus, we need to find total seats in auditorium i.e. S_{27}
Now, By using sum of $n^{\text {th }}$ term of an A.P. we will find it's sum
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
Where, $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$d=$ common difference
$S_{n}=$ sum of n terms
Thus, on substituting the given value in formula we get,
$\Rightarrow \mathrm{S}_{27}=\frac{27}{2}[2 \times 20+(27-1) \times 2]$
$\Rightarrow S_{27}=\frac{27}{2} \times 2 \times[20+26]$
$\Rightarrow S_{27}=27 \times 46$
$\Rightarrow S_{27}=1242$
Q. 5. Kargil's temperature was recorded in a week from Monday to Saturday. All readings were in A.P. The sum of temperatures of Monday and Saturday was $5^{\circ} \mathrm{C}$ more than sum of temperatures of Tuesday and Saturday. If temperature of Wednesday was -30° celsius then find the temperature on the other five days.

Answer :

Let Monday be the first term i.e. $\mathrm{a}=\mathrm{t}_{1}$

Let Tuesday be the second term i.e t2
Let Wednesday be the third term i.e t_{3}
Let Thursday be the fourth term i.e t_{4}
Let Friday be the fifth term i.e t5
Let Saturday be the sixth term i.e to
Given: $\mathrm{t}_{1}+\mathrm{t}_{6}=5+\left(\mathrm{t}_{2}+\mathrm{t}_{6}\right)$
$\Rightarrow \mathrm{a}=5+\left(\mathrm{t}_{2}+\mathrm{t}_{6}\right)-\mathrm{t}_{6}$
$\Rightarrow \mathrm{a}=5+\mathrm{t}_{2}$
We know that,
Now, By using $\mathrm{n}^{\text {th }}$ term of an A.P. formula
$t_{n}=a+(n-1) d$
where $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$\mathrm{d}=$ common difference
$\mathrm{t}_{\mathrm{n}}=\mathrm{n}^{\text {th }}$ terms
Thus, $\mathrm{t}_{2}=\mathrm{a}+(2-1) \mathrm{d}$
$\Rightarrow \mathrm{t} 2=\mathrm{a}+\mathrm{d}$
Now substitute value of t_{2} in (1) we get,
$\Rightarrow \mathrm{a}=5+(\mathrm{a}+\mathrm{d})$
$\Rightarrow d=a-5-a=-5$
Given: $\mathrm{t}_{3}=-30^{\circ}$

Thus, $\mathrm{t}_{3}=\mathrm{a}+(3-1) \times(-5)$
$\Rightarrow-30=\mathrm{a}+2 \times(-5)$
$\Rightarrow-30=\mathrm{a}-10$
$\Rightarrow \mathrm{a}=-30+10=-20^{\circ}$
Thus, Monday, $a=t_{1}=-20^{\circ}$
Using formula $t_{n+1}=t_{n}+d$
We can find the value of the other terms
Tuesday, $\mathrm{t}_{2}=\mathrm{t}_{1}+\mathrm{d}=-20-5=-25^{\circ}$
Wednesday, $\mathrm{t}_{3}=\mathrm{t}_{2}+\mathrm{d}=-25-5=-30^{\circ}$
Thursday, $\mathrm{t}_{4}=\mathrm{t}_{3}+\mathrm{d}=-30-5=-35^{\circ}$
Friday, $\mathrm{t}_{5}=\mathrm{t}_{4}+\mathrm{d}=-35-5=40^{\circ}$
Saturday, $\mathrm{t}_{6}=\mathrm{t}_{5}+\mathrm{d}=-40-5=-45^{\circ}$
Thus, we obtain an A.P.
$-20^{\circ},-25^{\circ},-30^{\circ},-35^{\circ},-40^{\circ},-45^{\circ}$
Q. 6. On the world environment day tree plantation programme was arranged on a land which is triangular in shape. Trees are planted such that in the first row there is one tree, in the second row there are two trees, in the third row three trees and so on. Find the total number of trees in the $\mathbf{2 5}$ rows.

Answer : First term a = 1
Second term $t_{1}=2$
Third term $\mathrm{t}_{3}=3$
Common difference $d=t_{3}-t_{2}=3-2=1$
We need to find total number of trees when $n=25$
Thus, By using sum of $n^{\text {th }}$ term of an A.P. we will find it's sum
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
Where, $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$d=$ common difference
$\mathrm{S}_{\mathrm{n}}=\mathrm{sum}$ of n terms
We need to find S_{25}
Thus, on substituting the given value in formula we get,
$\Rightarrow \mathrm{S}_{25}=\frac{25}{2}[2 \times 1+(25-1) \times 1]$
$\Rightarrow \mathrm{S}_{25}=\frac{25}{2}[2+24]$
$\Rightarrow \mathrm{S}_{25}=\frac{25}{2} \times 2 \times[1+12]$
$\Rightarrow S_{25}=25 \times 13=325$

Problem Set 3

Q. 1 A. Choose the correct alternative answer for each of the following sub questions.

The sequence - 10, -6, - 2, 2, \ldots
A. is an A.P., Reason $d=-16$
B. is an A.P., Reason $d=4$
C. is an A.P., Reason $\mathrm{d}=-4$
D. is not an A.P.

Answer :

First term $\mathrm{a}=-10$
Second term $\mathrm{t}_{1}=-6$
Third term $\mathrm{t}_{2}=-2$

Fourth term $\mathrm{t}_{3}=2$
Common difference $d=t_{1}-a=-6-(-10)=-6+10=4$

Common difference $d=t_{2}-t_{1}=-2-(-6)=-2+6=4$

Common difference $d=t_{3}-t_{2}=2-(-2)=2+2=4$

Since, the common difference is same
\therefore The given sequence is A.P. with common difference $\mathrm{d}=4$

Hence, correct answer is (B)
Q. 1 B. Choose the correct alternative answer for each of the following sub questions.

First four terms of an A.P. are, whose first term is - $\mathbf{2}$ and commondifference is $\mathbf{- 2}$.
A. $-2,0,2,4$
B. $-2,4,-8,16$
C. $-2,-4,-6,-8$
D. $-2,-4,-8,-16$

Answer : Given first term $\mathrm{t}_{1}=\mathbf{- 2}$

Common difference $\mathrm{d}=-2$

By using formula $\mathrm{t}_{\mathrm{n}+1}=\mathrm{t}_{\mathrm{n}}+\mathrm{d}$
$t_{2}=t_{1}+d=-2+(-2)=-2-2=-4$
$t_{3}=t_{2}+d=-4+(-2)=-4-2=-6$
$t_{4}=t_{3}+d=-6+(-2)=-6-2=-8$

Hence, the A.P. is $-2,-4,-6,-8$
\therefore correct answer is (C)
Q. 1 C. Choose the correct alternative answer for each of the following sub questions.

What is the sum of the first $\mathbf{3 0}$ natural numbers?

A. 464
B. 465
C. 462
D. 461

Answer : List of first 30 natural number is
$1,2,3, \ldots \ldots \ldots, 30$

First term $\mathrm{a}=1$

Second term $t_{1}=2$

Third term $t_{2}=3$

Common difference $d=t_{3}-t_{2}=3-2=1$
number of terms $\mathrm{n}=30$

Thus, By using sum of $n^{\text {th }}$ term of an A.P. we will find it's sum
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
Where, $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$\mathrm{d}=$ common difference
$S_{n}=$ sum of n terms

We need to find S_{30}
$\Rightarrow \mathrm{S}_{30}=\frac{30}{2}[2 \times 1+(30-1) \times 1]$
$\Rightarrow S_{30}=15[2+29]$
$\Rightarrow S_{30}=15 \times 31$
$\Rightarrow S_{30}=465$

Hence, Correct answer is (B)
Q. 1 D. Choose the correct alternative answer for each of the following sub questions.

For an given A.P. $\mathrm{t}_{7}=4, \mathrm{~d}=-4$ then $\mathrm{a}=\ldots$
A. 6
B. 7
C. 20
D. 28

Answer:
Now, By using $\mathrm{n}^{\text {th }}$ term of an A.P. formula
$t_{n}=a+(n-1) d$
where $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$d=$ common difference
$\mathrm{t}_{\mathrm{n}}=\mathrm{n}^{\text {th }}$ terms
$\Rightarrow \mathrm{t}_{7}=\mathrm{a}+(7-1) \times(-4)$
$\Rightarrow 4=\mathrm{a}+6 \times(-4)$
$\Rightarrow 4=\mathrm{a}-24$
$\Rightarrow a=24+4=28$
Thus, the correct answer is (D)
Q. 1 E. Choose the correct alternative answer for each of the following sub questions.

For an given A.P. $a=3.5, d=0, n=101$, then $t_{n}=\ldots$
A. 0
B. 3.5
C. 103.5
D. 104.5

Answer:

Given: $\mathrm{a}=3.5, \mathrm{~d}=0, \mathrm{n}=101$
Now, By using $\mathrm{n}^{\text {th }}$ term of an A.P. formula
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
where $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$d=$ common difference
$\mathrm{tn}_{\mathrm{n}}=\mathrm{n}^{\text {th }}$ terms
Substituting all given value in the formulae we get,
$\Rightarrow t_{n}=3.5+(101-1) \times 0$
$\Rightarrow t_{n}=3.5$

Thus, correct answer is (B)
Q. 1 F. Choose the correct alternative answer for each of the following sub questions.

In an A.P. first two terms are $-3,4$ then $21^{\text {st }}$ term is . . .
A. -143
B. 143
C. 137
D. 17

Answer :

Given: first term $\mathrm{a}=-3$
Second term $\mathrm{t}_{1}=4$
Common difference $d=t_{1}-\mathrm{a}=4-(-3)=4+3=7$

We need to find t_{21} where $\mathrm{n}=21$
Now, By using $\mathrm{n}^{\text {th }}$ term of an A.P. formula
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
where $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$\mathrm{d}=$ common difference
$\mathrm{t}_{\mathrm{n}}=\mathrm{n}^{\text {th }}$ terms
Substituting all given value in the formulae we get,
$\Rightarrow \mathrm{t}_{2}=-3+(21-1) \times 7$
$\Rightarrow \mathrm{t}_{2} 1=-3+20 \times 7$
$\Rightarrow \mathrm{t}_{21}=-3+140=137$
Hence, correct answer is (C)
Q. 1 G. Choose the correct alternative answer for each of the following sub questions.

If for any A.P. $\mathrm{d}=5$ then $\mathrm{t}_{18}-\mathrm{t}_{13}=\ldots$
A. 5
B. 20
C. 25
D. 30

Answer :

Given $d=5$
Now, By using $\mathrm{n}^{\text {th }}$ term of an A.P. formula
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
where $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$d=$ common difference
$\mathrm{t}_{\mathrm{n}}=\mathrm{n}^{\text {th }}$ terms
Thus, $\mathrm{t}_{18}-\mathrm{t}_{13}=[\mathrm{a}+(18-1) \times 5]-[\mathrm{a}+(13-1) \times 5]$
$\Rightarrow \mathrm{t}_{18}-\mathrm{t}_{13}=[17 \times 5]-[12 \times 5]$
$\Rightarrow \mathrm{t}_{18}-\mathrm{t}_{13}=85-60=25$

Thus, correct answer is (C)
Q. 1 H . Choose the correct alternative answer for each of the following sub questions.

Sum of first five multiples of 3 is. . .
A. 45
B. 55
C. 15
D. 75

Answer:

First five multiples of 3 are
$3,6,9,12,15$
First term $\mathrm{a}=3$

Second term $\mathrm{t}_{1}=6$
Third term $\mathrm{t}_{2}=9$
Common difference $d=t_{2}-t_{1}=9-6=3$
Thus, By using sum of $n^{\text {th }}$ term of an A.P. we will find it's sum
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
Where, $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$\mathrm{d}=$ common difference
$S_{n}=$ sum of n terms

We need to find S_{5}
$\Rightarrow S_{5}=\frac{5}{2}[2 \times 3+(5-1) \times 3]$
$\Rightarrow S_{5}=\frac{5}{2}[6+4 \times 3]$
$\Rightarrow S_{5}=\frac{5}{2}[6+12]$
$\Rightarrow S_{5}=\frac{5}{2} \times 18=5 \times 9=45$
Thus, correct answer is (A)
Q. 1 I. Choose the correct alternative answer for each of the following sub questions.
$15,10,5, \ldots$ In this A.P. sum of first 10 terms is . . .
A. -75
B. -125
C. 75
D. 125

Answer:

First term $\mathrm{a}=15$
Second term $\mathrm{t}_{1}=10$
Third term $\mathrm{t}_{2}=5$
Common difference $d=t_{2}-t_{1}=5-10=-5$

No. of terms $n=10$

Thus, By using sum of $n^{\text {th }}$ term of an A.P. we will find it's sum
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$

Where, $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$d=$ common difference
$S_{n}=$ sum of n terms

We need to find S_{10}
$\Rightarrow \mathrm{S}_{10}=\frac{10}{2}[2 \times 15+(10-1) \times(-5)]$
$\Rightarrow S_{10}=5[30+9 \times(-5)]$
$\Rightarrow S_{10}=5[30-45]$
$\Rightarrow S_{10}=5 \times(-15)=-75$
Hence, correct answer is (A)
Q. 1 J . Choose the correct alternative answer for each of the following sub questions.

In an A.P. 1st term is 1 and the last term is 20 . The sum of all terms is $=\mathbf{3 9 9}$ then \mathbf{n} =...
A. 42
B. 38
C. 21
D. 19

Answer :

Given, first term = 1
Last term = 20

Sum of n terms, $S_{n}=399$

We need to find no. of terms n
Using Sum of n terms of an A.P. formula
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}$ [first term + last term]
where $\mathrm{n}=\mathrm{no}$. of terms
$S_{n}=$ sum of n terms
Now, on substituting given value in formula we get,
$\Rightarrow 399=\frac{\mathrm{n}}{2}[1+20]$
$\Rightarrow 399=\frac{\mathrm{n}}{2} \times 21$
$\Rightarrow \mathrm{n}=\frac{399 \times 2}{21}=19 \times 2=38$
\therefore correct answer is (B)
Q. 2. Find the fourth term from the end in an A.P. -11, - 8, - 5, ..., 49.

Answer : First term from end $\mathrm{a}=49$
$t_{n}=-11$
$t_{n-1}=-8$

Common difference $d=t_{n}-t_{n-1}=-11-(-8)=-11+8=-3$
Now, By using $\mathrm{n}^{\text {th }}$ term of an A.P. formula
$t_{n}=a+(n-1) d$
where $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$d=$ common difference
$\mathrm{t}_{\mathrm{n}}=\mathrm{n}^{\text {th }}$ terms
no. of terms $n=4$
$\Rightarrow t_{4}=49+(4-1) \times(-3)$
$\Rightarrow t_{4}=49+3 \times(-3)$
$\Rightarrow t_{4}=49-9=40$
Q. 3. In an A.P. the 10 th term is 46 , sum of the 5 th and 7 th term is 52 . Find the A.P.

Answer : Given: $\mathrm{t} 10=46$
$\mathrm{t}_{5}+\mathrm{t}_{7}=52$
Now, By using $\mathrm{n}^{\text {th }}$ term of an A.P. formula
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
where $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$\mathrm{d}=$ common difference
$\mathrm{t}_{\mathrm{n}}=\mathrm{n}^{\text {th }}$ terms
Hence, by given condition we get,
$\Rightarrow t_{10}=46$
$\Rightarrow a+(10-1) d=46$
$\Rightarrow a+9 d=46$
$\Rightarrow \mathrm{t}_{5}+\mathrm{t}_{7}=52$
$\Rightarrow[a+(5-1) d]+[a+(7-1) d]=52$
$\Rightarrow[a+4 d]+[a+6 d]=52$
$\Rightarrow 2 \mathrm{a}+10 \mathrm{~d}=52$

Multiply eq. (2) by 2 we get,
$\Rightarrow 2 \mathrm{a}+18 \mathrm{~d}=92$

Subtract eq. (2) by eq. (3)
$\Rightarrow[2 a+18 d]-[2 a+10 d]=92-52$
$\Rightarrow 8 \mathrm{~d}=40$
$\Rightarrow d=\frac{40}{8}=5$
Substitute "d" in (1)
$\Rightarrow a+9 \times 5=46$
$\Rightarrow a+45=46$
$\Rightarrow a=t_{1}=46-45=1$
we know that, $t_{n+1}=t_{n}+d$
$\Rightarrow \mathrm{t}_{2}=\mathrm{t}_{1}+\mathrm{d}=1+5=6$
$\Rightarrow t_{3}=t_{2}+d=6+5=11$
Hence, an A.P. is $1,6,11, \ldots$
Q. 4. The A.P. in which 4 th term is $\mathbf{- 1 5}$ and 9 th term is $\mathbf{- 3 0}$. Find the sum of the first 10 numbers.

Answer : $\mathrm{t}_{4}=-15$ and $\mathrm{tg}=-30$
Now, By using $\mathrm{n}^{\text {th }}$ term of an A.P. formula
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
where $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$d=$ common difference
$\mathrm{t}_{\mathrm{n}}=\mathrm{n}^{\text {th }}$ terms
Hence, by given condition we get,
$t_{4}=-15$
$\Rightarrow a+(4-1) d=-15$
$\Rightarrow a+3 d=-15$
$\mathrm{t} 9=-30$
$\Rightarrow a+(9-1) d=-30$
$\Rightarrow a+8 d=-30 \ldots . .(2)$

Subtracting eq. (1) from eq. (2)
$\Rightarrow[a+8 d]-[a+3 d]=-30-(-15)$
$\Rightarrow 5 d=-30+15=-15$
$\Rightarrow d=-\frac{15}{5}=-3$
Substituting, "d" in eq. (1)
$\Rightarrow \mathrm{a}+3 \times(-3)=-15$
$\Rightarrow \mathrm{a}+-9=-15$
$\Rightarrow \mathrm{a}=-15+9=-6$
Thus, By using sum of $n^{\text {th }}$ term of an A.P. we will find it's sum
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
Where, $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$d=$ common difference
$S_{n}=$ sum of n terms

We need to find S_{10}
$\Rightarrow S_{10}=\frac{10}{2}[2 \times(-6)+(10-1) \times(-3)]$
$\Rightarrow S_{10}=5[-12+9 \times(-3)]$
$\Rightarrow S_{10}=5[-12-27]$
$\Rightarrow S_{10}=5 \times(-39)=-195$
Q. 5. Two A.P.'s are given $9,7,5, \ldots$ and $24,21,18, \ldots$. If nth term of both the progressions are equal then find the value of n and $n t h$ term.

Answer : Given A.P. is $9,7,5 \ldots$
Whose first tern $\mathrm{a}=9$

Second term $\mathrm{t} 1=7$
Third term $\mathrm{t}_{3}=5$

Common difference $d=t_{3}-t_{2}=5-7=-2$
Another A.P. is $24,21,18, \ldots$
Whose first tern $\mathrm{a}=24$

Second term $\mathrm{t}_{1}=21$
Third term $\mathrm{t}_{3}=18$

Common difference $\mathrm{d}=\mathrm{t}_{3}-\mathrm{t}_{2}=18-21=-3$
We have been given, $\mathrm{n}^{\text {th }}$ term of both the A.P. is same
thus, by using ${ }^{\text {th }}$ term of an A.P. formula
$t_{n}=a+(n-1) d$
where $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$\mathrm{d}=$ common difference
$\mathrm{t}_{\mathrm{n}}=\mathrm{n}^{\text {th }}$ terms

Hence, by given condition we get,
$\Rightarrow 9+(\mathrm{n}-1) \times(-2)=24+(\mathrm{n}-1) \times(-3)$
$\Rightarrow 9-2 \mathrm{n}+2=24-3 \mathrm{n}+3$
$\Rightarrow 11-2 \mathrm{n}=27-3 \mathrm{n}$
$\Rightarrow 3 n-2 n=27-11$
$\Rightarrow \mathrm{n}=16$

Thus, value of $n^{\text {th }}$ term where $a=9, d=-2, n=16$ is
$\Rightarrow t_{n}=9+(16-1) \times(-2)$
$\Rightarrow t_{n}=9-15 \times 2$
$\Rightarrow t_{n}=9-30=-21$
Q. 6. If sum of 3 rd and 8 th terms of an A.P. is 7 and sum of 7 th and 14 th terms is 3 then find the 10th term.

Answer : Now, By using n ${ }^{\text {th }}$ term of an A.P. formula
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
where $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$\mathrm{d}=$ common difference
$\mathrm{t}_{\mathrm{n}}=\mathrm{n}^{\text {th }}$ terms
Hence, by given condition we get,
$t_{3}+t_{8}=7$

$$
\begin{align*}
& \Rightarrow[a+(3-1) d]+[a+(8-1) d]=7 \\
& \Rightarrow[a+2 d]+[a+7 d]=7 \\
& \Rightarrow 2 a+9 d=7 \ldots .(1) \tag{1}\\
& t_{7}+t_{14}=-3 \\
& \Rightarrow[a+(7-1) d]+[a+(14-1) d]=-3 \\
& \Rightarrow[a+6 d]+[a+13 d]=-3 \\
& \Rightarrow 2 a+19 d=-3 \ldots . .(2) \tag{2}
\end{align*}
$$

Subtracting eq. (1) from eq. (2)
$\Rightarrow[2 a+19 d]-[2 a+9 d]=-3-7$
$\Rightarrow 10 d=-10$
$\Rightarrow \mathrm{d}=-\frac{10}{10}=-1$
Substituting, "d" in eq. (1)
$\Rightarrow 2 \mathrm{a}+9 \times(-1)=7$
$\Rightarrow 2 \mathrm{a}-9=7$
$\Rightarrow 2 \mathrm{a}=7+9=16$
$\Rightarrow \mathrm{a}=\frac{16}{2}=8$
Now, we can find value of t_{10}
Thus, $\mathrm{t}_{10}=8+(10-1) \times(-1)$
Q. 7 In an A.P. the first term is $\mathbf{- 5}$ and last term is 45 . If sum of all numbers in the A.P. is 120, then how many terms are there? What is the common difference?

Answer :

Given, first term $\mathrm{a}=-5$
Last term $t_{n}=45$
Sum of n terms $S_{n}=120$
To find no of terms " n "
Using Sum of n terms of an A.P. formula
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}$ [first term + last term]
where $\mathrm{n}=\mathrm{no}$. of terms
$S_{n}=$ sum of n terms

Now, on substituting given value in formula we get,
$\Rightarrow 120=\frac{\mathrm{n}}{2}[-5+45]$
$\Rightarrow 120=\frac{\mathrm{n}}{2} \times 40$
$\Rightarrow 120=20 n$
$\Rightarrow \mathrm{n}=\frac{120}{20}=6$
To find the common difference ' d '
We use $\mathrm{n}^{\text {th }}$ term of an A.P. formula
$t_{n}=a+(n-1) d$
where $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$d=$ common difference
$\mathrm{t}_{\mathrm{n}}=\mathrm{n}^{\text {th }}$ terms

Thus, on substituting all values we get,
$\Rightarrow \mathrm{t}_{6}=-5+(6-1) \mathrm{d}$
$\Rightarrow 45=-5+5 d$
$\Rightarrow 5 d=45+5=50$
$\Rightarrow d=\frac{50}{5}=10$
Thus, common difference is 10
Q. 8. Sum of 1 to n natural numbers is 36 , then find the value of n.

Answer : List of n natural number is
$1,2,3, \ldots \ldots . n$
First term $\mathrm{a}=1$
Second term $\mathrm{t}_{1}=2$
Third term t $\mathrm{t}_{3}=3$
Thus, common difference $d=t_{3}-t_{2}=3-2=1$
Given $S_{n}=36$
Thus, By using sum of $n^{\text {th }}$ term of an A.P. we will find it's sum
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
Where, $\mathrm{n}=\mathrm{no}$. of terms
$\mathrm{a}=$ first term
$d=$ common difference
$\mathrm{S}_{\mathrm{n}}=\mathrm{sum}$ of n terms

We need to find no. of terms n

$$
\begin{aligned}
& \Rightarrow 36=\frac{n}{2}[2 \times 1+(n-1) \times 1] \\
& \Rightarrow 36=\frac{n}{2}[2+n-1] \\
& \Rightarrow 36=\frac{n}{2}[1+n] \\
& \Rightarrow n(1+n)=36 \times 2=72 \\
& \Rightarrow n^{2}+n-72=0 \\
& \Rightarrow n^{2}+9 n-8 n-72=0 \\
& \Rightarrow n(n+9)-8(n+9)=0 \\
& \Rightarrow(n-8)(n+9)=0 \\
& \Rightarrow n-8=0 \text { or } n+9=0 \\
& \Rightarrow n=8 \text { or } n=-9
\end{aligned}
$$

Since, number of terms n can't be negative
$\therefore \mathrm{n}=8$
Q. 9. Divide 207 in three parts, such that all parts are in A.P. and product of two smaller parts will be 4623.

Answer : Let 3 parts of 207 be $a-d$, $a, a+d$ such that,
$\Rightarrow(\mathrm{a}-\mathrm{d})+\mathrm{a}+(\mathrm{a}+\mathrm{d})=207$
$\Rightarrow 3 \mathrm{a}=207$
$\Rightarrow \mathrm{a}=\frac{207}{3}=69$
Since, product of two smaller terms is 4623
$\Rightarrow(\mathrm{a}-\mathrm{d}) \times \mathrm{a}=4623$
$\Rightarrow(69-d) \times 69=4623$
$\Rightarrow 69-\mathrm{d}=\frac{4623}{69}=67$
$\Rightarrow d=69-67=2$
Thus, $a-d=69-2=67$
$a=69$
$a+d=69+2=71$
Thus, the A.P so formed is $67,69,71$
Q. 10. There are 37 terms in an A.P., the sum of three terms placed exactly at the middle is 225 and the sum of last three terms is 429. Write the A.P.

Answer : Let first term = a
Common difference $=\mathrm{d}$
Since, A.P. consist of 37 terms, therefor the middle most term is
$\frac{37+1}{2}=\frac{38}{2}=19$ th term
Thus, three middle most term are $\mathrm{t}_{18}=18^{\text {th }}$ term, $\mathrm{t}_{19}=19^{\text {th }}$ term,
$\mathrm{t}_{20}=20^{\text {th }}$ term
We use $\mathrm{n}^{\text {th }}$ term of an A.P. formula
$t_{n}=a+(n-1) d$
where $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$d=$ common difference
$\mathrm{t}_{\mathrm{n}}=\mathrm{n}^{\text {th }}$ terms

Thus, on substituting all values we get,

Given, $\mathrm{t}_{18}+\mathrm{t}_{19}+\mathrm{t}_{20}=225$
$\Rightarrow[a+(18-1) d]+[a+(19-1) d]+[a+(20-1) d]=225$
$\Rightarrow[a+17 d]+[a+18 d]+[a+19 d]=225$
$\Rightarrow 3 a+54 d=225$

Dividing by 3
$\Rightarrow a+18 d=75$

Given, sum of last three term is 429

$$
\begin{aligned}
& \Rightarrow t_{35}+t_{36}+t_{37}=429 \\
& \Rightarrow[a+(35-1) d]+[a+(36-1) d]+[a+(37-1) d]=429 \\
& \Rightarrow[a+34 d]+[a+35 d]+[a+36 d]=429 \\
& \Rightarrow 3 a+105 d=429
\end{aligned}
$$

Dividing by 3

$$
\begin{equation*}
a+35 d=143 \tag{2}
\end{equation*}
$$

Subtracting eq. (1) from eq. (2) we get,

$$
\begin{aligned}
& \Rightarrow[a+35 d]-[a+18 d]=143-75 \\
& \Rightarrow 17 d=68 \\
& \Rightarrow d=\frac{68}{17}=4
\end{aligned}
$$

Substituting value of 'd' in eq. (1) we get,
$\Rightarrow a+18 \times 4=75$
$\Rightarrow \mathrm{a}+72=75$
$\Rightarrow \mathrm{a}=75-72=3$
$\Rightarrow a=t_{1}=3$

We know that, $\mathrm{t}_{\mathrm{n}+1}=\mathrm{t}_{\mathrm{n}}+\mathrm{d}$
$t_{2}=t_{1}+d=3+4=7$
$t_{3}=t_{2}+d=7+4=11$
$t_{4}=t_{3}+d=11+4=15$
$t_{37}=3+(37-1) \times 4$
$t_{37}=3+36 \times 4$
$t_{37}=3+144=147$
Thus, the A.P. is $3,7,11, \ldots$. . 147
Q. 11. If first term of an A.P. is a, second term is b and last term is c, then show that sum of all terms is

$$
\frac{(a+c)(b+c-2 a)}{2(b-a)}
$$

Answer:

Given first term $=\mathrm{a}$
Second term = b
Last term $=\mathrm{c}$
Common difference $d=$ second term - first term $=b-a$

We will first find the number of terms
We use $\mathrm{n}^{\text {th }}$ term of an A.P. formula
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
where $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$\mathrm{d}=$ common difference
$\mathrm{t}_{\mathrm{n}}=\mathrm{n}^{\text {th }}$ terms

Thus, on substituting all values we get,
$\Rightarrow \mathrm{c}=\mathrm{a}+(\mathrm{n}-1)(\mathrm{b}-\mathrm{a})$
$\Rightarrow \mathrm{c}=\mathrm{a}+(\mathrm{b}-\mathrm{a}) \mathrm{n}+\mathrm{a}-\mathrm{b}$
$c=2 a-b+(b-a) n$
$\Rightarrow(b-a) n=c+b-2 a$
$\Rightarrow \mathrm{n}=\frac{\mathrm{c}+\mathrm{b}-2 \mathrm{a}}{\mathrm{b}-\mathrm{a}}$
Using Sum of n terms of an A.P. formula
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}$ [first term + last term $]$
where $\mathrm{n}=\mathrm{no}$. of terms
$S_{n}=$ sum of n terms

On substituting all the values we get,
$\Rightarrow \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{c}+\mathrm{b}-2 \mathrm{a}}{2(\mathrm{~b}-\mathrm{a})}[\mathrm{a}+\mathrm{c}]$
$\Rightarrow S_{n}=\frac{(a+c)(c+b-2 a)}{2(b-a)}$

Hence, proved
Q. 12. If the sum of first p terms of an A.P. is equal to the sum of first q terms then show that the sum of its first $(p+q)$ terms is zero. $(p \neq q)$

Answer : We know that, sum of $\mathrm{n}^{\text {th }}$ term of an A.P. we will find it's sum
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
Where, $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$\mathrm{d}=$ common difference
$\mathrm{S}_{\mathrm{n}}=$ sum of n terms
Now, Sum of p terms is
$S_{p}=\frac{p}{2}[2 a+(p-1) d]$
And, Sum of q terms is
$\mathrm{S}_{\mathrm{q}}=\frac{\mathrm{q}}{2}[2 \mathrm{a}+(\mathrm{q}-1) \mathrm{d}]$
Given: $S_{p}=S_{q}$
$\Rightarrow \frac{p}{2}[2 a+(p-1) d]=\frac{q}{2}[2 a+(q-1) d]$
Multiply by 2 on both sides, we get,
$\Rightarrow p[2 a+(p-1) d]=q[2 a+(q-1) d]$
$\Rightarrow 2 a p+p(p-1) d=2 a q+q(q-1) d$
$\Rightarrow 2 a p-2 a q+p(p-1) d-q(q-1) d=0$
$\Rightarrow 2 \mathrm{a}(\mathrm{p}-\mathrm{q})+\mathrm{d}\left[\mathrm{p}^{2}-\mathrm{p}-\mathrm{q}^{2}+\mathrm{q}\right]=0$
$\Rightarrow 2 \mathrm{a}(\mathrm{p}-\mathrm{q})+\mathrm{d}\left[\left(\mathrm{p}^{2}-\mathrm{q}^{2}\right)-\mathrm{p}+\mathrm{q}\right]=0$
$2 a(p-q)+d[(p-q)(p+q)-(p-q)]=0$
(since, $\left.(a-b)(a+b)=a^{2}-b^{2}\right)$
$\Rightarrow 2 \mathrm{a}(\mathrm{p}-\mathrm{q})+\mathrm{d}(\mathrm{p}-\mathrm{q})[\mathrm{p}+\mathrm{q}-1]=0$
$\Rightarrow(\mathrm{p}-\mathrm{q})[2 \mathrm{a}+\mathrm{d}(\mathrm{p}+\mathrm{q}-1)]=0$
Since, $p \neq q$
$\therefore \mathrm{p}-\mathrm{q} \neq 0$
$\Rightarrow 2 \mathrm{a}+\mathrm{d}(\mathrm{p}+\mathrm{q}-1)=0$
Multiply both side by $\frac{p+q}{2}$
$\Rightarrow \frac{p+q}{2}[2 a+d(p+q-1)]=0$
$\Rightarrow S_{p+q}=0$
Hence proved
Q. 13. If m times the m therm of an A.P. is equal to n times nth term then show that the $(\mathrm{m}+\mathrm{n})^{\text {th }}$ term of the A.P. is zero.

Answer :

We use $\mathrm{n}^{\text {th }}$ term of an A.P. formula
$t_{n}=a+(n-1) d$
where $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$d=$ common difference
$\mathrm{t}_{\mathrm{n}}=\mathrm{n}^{\text {th }}$ terms
Thus $\mathrm{m}^{\text {th }}$ term $=\mathrm{t}_{\mathrm{m}}=\mathrm{a}+(\mathrm{m}-1) \mathrm{d}$
Given: $\mathrm{m} \times \mathrm{tm}=\mathrm{n} \times \mathrm{t}_{\mathrm{n}}$

$$
\begin{aligned}
& \Rightarrow m \times[a+(m-1) d]=n \times[a+(n-1) d] \\
& \Rightarrow a m+m(m-1) d=a n+n(n-1) d \\
& \Rightarrow a m-a n+m(m-1) d-n(n-1) d=0 \\
& \Rightarrow a(m-n)+d[m(m-1)-n(n-1)]=0 \\
& \Rightarrow a(m-n)+d\left[m^{2}-m-n^{2}+n\right]=0 \\
& \Rightarrow a(m-n)+d\left[\left(m^{2}-n^{2}\right)-m+n\right]=0 \\
& \Rightarrow a(m-n)+d[(m-n)(m+n)-(m-n)]=0
\end{aligned}
$$

$\left(\right.$ since, $\left.(a-b)(a+b)=a^{2}-b^{2}\right)$
$\Rightarrow \mathrm{a}(\mathrm{m}-\mathrm{n})+\mathrm{d}(\mathrm{m}-\mathrm{n})[(\mathrm{m}+\mathrm{n})-1]=0$
$\Rightarrow(\mathrm{m}-\mathrm{n})[\mathrm{a}+\mathrm{d}(\mathrm{m}+\mathrm{n}-1)]=0$
Since, $m \neq n$
$\therefore \mathrm{m}-\mathrm{n} \neq 0$
$\Rightarrow \mathrm{a}+\mathrm{d}(\mathrm{m}+\mathrm{n}-1)=0$
$\Rightarrow \mathrm{tm}_{\mathrm{n}} \mathrm{n}=0$
Hence proved
Q. 14. ₹ 1000 is invested at 10 percent simple interest. Check at the end of every year if the total interest amount is in A.P. If this is an A.P. then find interest amount after 20 years. For this complete the following activity.

Simple interest $=\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{N}}{100}$
Simple interest after 1 year $=\frac{1000 \times 10 \times 1}{100}=\square$
Simple interest after 2 year $=\frac{1000 \times 10 \times 2}{100}=\square$
Simple interest after 3 year $=\frac{\square \times \square \times \square}{100}=300$
According to this the simple interest for $4,5,6$ years will be 400 , \square
\square respectively.
From this $\mathrm{d}=\square$ and $\mathrm{a}=\square$
Amount of simple interest after 20 years
$t_{n}+a+(n-1) d$
$t_{20}=\square+(20-1) \square$
$\mathrm{t}_{20}=\square$
Amount of simple interest after 20 years is $=\square$
Answer : Given: Principal Amount P = 1000
Rate of interest $R=10 \%$
Also, Simple Interest $=\frac{(\mathrm{P} \times \mathrm{R} \times \mathrm{N})}{100}$

Simple interest after 1 year $=\frac{1000 \times 10 \times 1}{100}=100$
Simple interest after 2 year $=\frac{1000 \times 10 \times 2}{100}=200$

Simple interest after 3 year $=\frac{1000 \times 10 \times 3}{100}=300$
According to this the simple interest for $4,5,6$ years will be 400 ,
500, 600 respectively.

Let first term $\mathrm{a}=100$
Second term $\mathrm{t}_{1}=200$
Third term $\mathrm{t}_{3}=300$
Common difference $d=t_{3}-t_{2}=300-200=100$
Amount of simple interest after 20 years
We use $\mathrm{n}^{\text {th }}$ term of an A.P. formula
$t_{n}=a+(n-1) d$
where $\mathrm{n}=\mathrm{no}$. of terms
$a=$ first term
$\mathrm{d}=$ common difference
$\mathrm{t}_{\mathrm{n}}=\mathrm{n}^{\text {th }}$ terms
$\Rightarrow t_{20}=100+(20-1) \times 100$
$\Rightarrow \mathrm{t}_{20}=100+19 \times 100$
$\Rightarrow \mathrm{t}_{20}=100+1900=2000$

