Pythagoras Theorem

Practice Set 2.1

Q. 1. Identify, with reason, which of the following are Pythagorean triplets.
(i) $(3,5,4)$
(ii) $(4,9,12)$
(iii) $(5,12,13)$
(iv) $(24,70,74)$
(v) $(10,24,27)$
(vi) $(11,60,61)$

Answer : In a triangle with sides (a,b,c), the Pythagoran's theorem states that $a^{2}+b^{2}=c^{2}$. If this condition is satisfied then (a,b,c)are Pythagorean triplets.
$1^{\text {st }}$ case: $3^{2}+4^{2}=5^{2}$. Thus this a triplet.
$2^{\text {nd }}$ case: $4^{2}+9^{2} \neq 12^{2}$
$3^{\text {rd }}$ case: $5^{2}+12^{2}=13^{2}$. Thus this is a triplet.

$5^{\text {th }}$ case: $10^{2}+24^{2} \neq 27^{2}$
$6^{\text {th }}$ case: $11^{2}+60^{2}=61^{2}$. Thus this is a triplet.
Q. 2. In figure 2.17, $\angle M N P=90^{\circ}, \operatorname{seg} N Q \perp \operatorname{seg} M P, M Q=9, Q P=4$, find $N Q$.

Fig. 2.17
Answer: In $\triangle \mathrm{MNP}, \angle \mathrm{MNP}=90^{\circ}$,
$\mathrm{MN}^{2}+\mathrm{NP}^{2}=\mathrm{MP}^{2}$
$\Rightarrow M N^{2}+N P^{2}=(M Q+Q P)^{2}$
$\Rightarrow \mathrm{MN}^{2}+\mathrm{NP}^{2}=(13)^{2}$
$\Rightarrow \mathrm{MN}^{2}+\mathrm{NP}^{2}=169 \ldots$
In $\triangle \mathrm{MQN}, \angle \mathrm{MQN}=90^{\circ}$,
$\mathrm{QN}^{2}+\mathrm{MQ}^{2}=\mathrm{MN}^{2}$
$\Rightarrow \mathrm{QN}^{2}+9^{2}=\mathrm{MN}^{2}$
$\Rightarrow \mathrm{QN}^{2}+81=\mathrm{MN}^{2}$
In $\triangle \mathrm{PQN}, \angle \mathrm{PQN}=90^{\circ}$,
$\mathrm{QN}^{2}+\mathrm{PQ}^{2}=\mathrm{PN}^{2}$
$\Rightarrow \mathrm{QN}^{2}+4^{2}=\mathrm{PN}^{2}$
$\Rightarrow \mathrm{QN}^{2}+16=\mathrm{PN}^{2}$
Now (2) + (3)
$\Rightarrow \mathrm{QN}^{2}+81+\mathrm{QN}^{2}+16=\mathrm{MN}^{2}+\mathrm{PN}^{2}$
$\Rightarrow 2 \mathrm{QN}^{2}+97=169$ [from (1)]
$\Rightarrow 2 \mathrm{QN}^{2}=72$
$\Rightarrow \mathrm{QN}^{2}=36$
Thus $\mathrm{NQ}=6$.
Q. 3. In figure 2.18, $\angle Q P R=90^{\circ}$, seg $P M \perp \operatorname{seg} Q R$ and $Q-M-R, P M=10, Q M=8$, find QR.

Fig. 2.18

Answer :

Fig. 2.18
In $\triangle \mathrm{PMQ}, \angle \mathrm{PMQ}=90^{\circ}$
So $P M^{2}+\mathrm{QM}^{2}=P Q^{2}$
$\Rightarrow 10^{2}+8^{2}=P Q^{2}$
$\Rightarrow 100+64=P^{2}$
$P Q^{2}=164 \ldots(1)$
In $\triangle P Q R, \angle R P Q=90^{\circ}$
So $\mathrm{PQ}^{2}+\mathrm{PR}^{2}=\mathrm{QR}^{2}$
$\Rightarrow 164+\mathrm{PR}^{2}=\mathrm{QR}^{2}$
$\Rightarrow P R^{2}=Q R^{2}-164$
In $\triangle \mathrm{PMR}, \angle \mathrm{PMR}=90^{\circ}$
So $P M^{2}+M R^{2}=P R^{2}$
$\Rightarrow 10^{2}+(Q R-Q M)^{2}=Q R^{2}-164$
$\Rightarrow 100+(Q R-Q M)^{2}=Q R^{2}-164$
$\Rightarrow 100+Q R^{2}-2 \cdot Q R \cdot Q M+Q M^{2}=Q R^{2}-164$
$\Rightarrow 100-2 . Q R .8+64=-164$
$\Rightarrow 16 Q R=2 \times 164$
$\Rightarrow Q R=20.5$
Thus QR = 20.5
Q. 4. See figure 2.19. Find RP and PS using the information given in $\triangle P S R$.

Ans. $R P=12, P S=6 \sqrt{3}$
Answer: $\ln \triangle \mathrm{PSR}, \angle \mathrm{PSR}=90^{\circ}$
So $P S S^{2}+S R^{2}=R P^{2}$
$\Rightarrow 6^{2}+\left(R P \cos \left(30^{\circ}\right)\right)^{2}=R P^{2}$
$\Rightarrow 6^{2}+R^{2}{ }^{\times \frac{3}{4}}=R^{2}$
$\Rightarrow 6^{2}=\frac{\mathrm{RP}^{2}}{4}$
$\Rightarrow R^{2}=4 \times 36$

Thus RP = 12 .
$P S=R P \cos \left(30^{\circ}\right)$
$\Rightarrow \mathrm{PS}=12 \times \frac{\sqrt{3}}{2}$
$P S=6 \sqrt{ } 3$.
Q. 5. For finding $A B$ and $B C$ with the help of information given in figure 2.20, complete following activity.

Fig. 2.20

$$
\begin{aligned}
& \mathrm{AB}=\mathrm{BC} \ldots \ldots \square \\
& \therefore \quad \angle \mathrm{BAC}=\square \\
& \therefore \mathrm{AB}=\mathrm{BC}=\square \times \mathrm{AC} \\
& \\
& =\square \times \sqrt{8} \\
& =\square \times 2 \sqrt{2} \\
& =\square \times
\end{aligned}
$$

Answer: $\ln \triangle \mathrm{ABC}, \angle \mathrm{ABC}=90^{\circ}$
So $A B^{2}+B C^{2}=A C^{2}$
$\Rightarrow 2 A B^{2}=5$
$\Rightarrow A B^{2}=\frac{5}{2}$
$\Rightarrow A B=\sqrt{\left(\frac{5}{2}\right)}=X($ Say $)$
$A B=B C=\sqrt{ }\left(\frac{5}{2}\right)$
$\angle B A C=45^{\circ}$ Since $A B=B C$
Now $\sqrt{ }\left(\frac{5}{2}\right)=X \sqrt{ } 5$
$X=\frac{1}{\sqrt{2}}$
Similarly, X2 $\sqrt{ } 2=\sqrt{ }\left(\frac{5}{2}\right)$
$X=\frac{1}{\sqrt{2}}$
Similarly, $X \sqrt{ } 8=\sqrt{ }\left(\frac{5}{2}\right)$
$X=\frac{1}{\sqrt{2}}$
Q. 6. Find the side and perimeter of a square whose diagonal is 10 cm .

Answer: In a square of side say a cm, any diagonal divide the square into two right triangles of equal dimensions.

Thus $\mathrm{a}^{2}+\mathrm{a}^{2}=10^{2}$
$\Rightarrow 2 \mathrm{a}^{2}=100$
$\Rightarrow a^{2}=50$
$a=5^{\sqrt{2}} \mathrm{~cm}$
Perimeter $=4 a$
$=4 \times 5 \sqrt{2}$
$=20 \sqrt{2}$

Perimeter of square $=20 \sqrt{2} \mathrm{~cm}$
Q. 7. In figure 2.21, $\angle D F E=90^{\circ}, F G \perp E D$, If $G D=8, F G=12$, find (1) $E G(2) F D$ and (3) EF

Fig. 2.21

Answer : In $\triangle \mathrm{DGF}, \angle \mathrm{DGF}=90^{\circ}$
$\mathrm{FD}^{2}=\mathrm{DG}^{2}+\mathrm{GF}^{2}$
$\Rightarrow \mathrm{FD}^{2}=64+144$
$\Rightarrow \mathrm{FD}^{2}=208$
$F D=4 \sqrt{13}$
In $\triangle \mathrm{DEF}, \angle \mathrm{DFE}=90^{\circ}$
$E D^{2}=\mathrm{DF}^{2}+E F^{2}$
$\Rightarrow(E G+8)^{2}=208+E F^{2}$.
In $\triangle \mathrm{EGF}, \angle \mathrm{FGE}=90^{\circ}$
$E F^{2}=E G^{2}+\mathrm{GF}^{2}$
$\Rightarrow(E G+8)^{2}-208=E G^{2}+144$
$\Rightarrow E G^{2}+2 \cdot E G .8+64-208=E G^{2}+144\left(\right.$ As we know $(a+b)^{2}=a^{2}+b^{2}+2 a b$
$E G=18$
From (1)
$\Rightarrow(E G+8) 2=208+E F^{2}$
$E F=6 \sqrt{ } 13$.
Q. 8. Find the diagonal of a rectangle whose length is $\mathbf{3 5} \mathbf{~ c m}$ and breadth is $12 \mathbf{c m}$.

Answer : The diagonal $=\sqrt{ }\left[\right.$ length ${ }^{2}+$ breadth $\left.^{2}\right]$
$=\sqrt{ }\left(35^{2}+12^{2}\right)$
$=\sqrt{ }(1225+144)$
$=\sqrt{ } 1369$
$=37$
Thus the diagonal is 37 cm .
Q. 9. In the figure 2.22, M is the midpoint of $Q R . \angle P R Q=90^{\circ}$. Prove that, $P Q^{2}=$ $4 \mathbf{P M}^{2}$ - 3PR ${ }^{2}$

Fig. 2.22

Answer: In $\triangle \mathrm{PRQ}, \angle \mathrm{PRQ}=90^{\circ}$
$P Q^{2}=P R^{2}+Q R^{2}---1$
In $\triangle \mathrm{PRM}, \angle \mathrm{PRM}=90^{\circ}$
$P M^{2}=P R^{2}+M R^{2}$
$\Rightarrow \mathrm{PM}^{2}=\mathrm{PR}^{2}+\left(\frac{\mathrm{QR}}{2}\right)_{2}[\mathrm{M}$ is midpoint $]$
$\Rightarrow 4\left(\mathrm{PM}^{2}-\mathrm{PR}^{2}\right)=\mathrm{QR}^{2}---2$
1 And 2 implies
$P Q^{2}=P R^{2}+4\left(P M^{2}-P R^{2}\right)$
$\Rightarrow P Q^{2}=4 P M^{2}-3 P R^{2}$

PROVED.

Q. 10. Walls of two buildings on either side of a street are parallel to each other. A ladder 5.8 m long is placed on the street such that its top just reaches the window of a building at the height of 4 m . On turning the ladder over to the other side of the street, its top touches the window of the other building at a height 4.2 m . Find the width of the street.

Answer : Let us consider a distance x m on the street from one building and a distance y m from the other one.

Now according to question,
In the $1^{\text {st }}$ case,
$5.8^{2}=4^{2}+x^{2}$
$\Rightarrow x^{2}=17.64$
$\Rightarrow \mathrm{x}=4.2$
Similarly for the second building,
$5.8^{2}=4.2^{2}+y^{2}$
$\Rightarrow \mathrm{y}^{2}=16$
$\Rightarrow y=4$
Total width $=x+y$
$=4+4.2$
$=8.2$
Thus the total width is 8.2 m .

Practice Set 2.2

Q. 1. In $\triangle P Q R$, point S is the midpoint of side $Q R$. If $P Q=11, P R=17, P S=13$,find QR.

Answer :

Given $P S=13, P Q=11, P R=17$
By Apollonius's Theorem,
$\mathrm{PS}^{2}=\frac{\mathrm{PQ}^{2}+\mathrm{PR}^{2}}{2}-\frac{\mathrm{QR}^{2}}{4}$
$\Rightarrow 169=\frac{121+289}{2}-\frac{\mathrm{QR}^{2}}{4}$
$\Rightarrow \frac{\mathrm{QR}^{2}}{4}=36$
$\Rightarrow Q R^{2}=144$
$Q R=12$
Q. 2. In $\triangle A B C, A B=10, A C=7, B C=9$ then find the length of the median drawn from point C to side $A B$

Answer : The figure is given below:

$$
A B=10 \text { Units }
$$

According to Pythagoras theorem,
Median2 $=\frac{\mathrm{AC}^{2}+\mathrm{BC}^{2}}{2}-\frac{\mathrm{AB}^{2}}{4}$
\Rightarrow Median2 $=\frac{49+81}{2}-\frac{100}{4}$
\Rightarrow Median2 $=40$
Median $=2 \sqrt{ } 10$
Thus the median is $2 \sqrt{ } 10$
Q. 3. In the figure 2.28 seg $P S$ is the median of $\triangle P Q R$ and $P T \perp Q R$. Prove that,
(1) $\mathrm{PR}^{2}=\mathrm{PS}^{2}+\mathrm{QR} \times \mathrm{ST}+\left(\frac{\mathrm{QR}}{2}\right)^{2}$
(2) $\mathrm{PQ}^{2}=\mathrm{PS}^{2}-\mathrm{QR} \times \mathrm{ST}+\left(\frac{\mathrm{QR}}{2}\right)^{2}$

Fig. 2.28

Answer : According to the question,
$\mathrm{QS}=\mathrm{SR}=\frac{\mathrm{QR}}{2}, \angle \mathrm{~T}=90^{\circ}$
Now in $\triangle \mathrm{PTR}, \angle \mathrm{PTR}=90^{\circ}$
$P T^{2}+T R^{2}=P R^{2}$
$\Rightarrow P R^{2}=\mathrm{PT}^{2}+\left(\mathrm{ST}+\frac{\mathrm{QR}}{2}\right)^{2}$
$\Rightarrow \mathrm{PR}^{2}=\mathrm{PT}^{2}+\left(\mathrm{ST}+\frac{\mathrm{QR}}{2}\right)^{2}$
$\Rightarrow \mathrm{PR}^{2}=\mathrm{PT}^{2}+\mathrm{ST}^{2}+2 . \mathrm{ST} \cdot \frac{\mathrm{QR}}{2}+\frac{\mathrm{QR}^{2}}{4}----1$
Similarly in \triangle PTS
$P S^{2}=P T^{2}+S T^{2}----2$
1 and 2 implies,
$P R^{2}=\mathrm{PS}^{2}-\mathrm{ST}^{2}+\mathrm{ST}^{2}+2 . \mathrm{ST} \cdot \frac{Q R}{2}+\frac{Q R^{2}}{4}$
$\Rightarrow P R^{2}=P S^{2}+S T \cdot Q R+\frac{Q R^{2}}{4}$

PROVED.

Now in $\triangle \mathrm{PTQ}, \angle \mathrm{PTQ}=90^{\circ}$

$$
\mathrm{PT}^{2}+\mathrm{TQ}^{2}=\mathrm{PQ}^{2}
$$

$\Rightarrow \mathrm{PR}^{2}=\mathrm{PT}^{2}+\left(\mathrm{ST}+\frac{\left.\frac{Q R}{2}\right)^{2}}{}\right.$
$\Rightarrow \mathrm{PR}^{2}=\mathrm{PT}^{2}+\left(\frac{Q R}{2}-\mathrm{ST}\right)^{2}$
$\Rightarrow \mathrm{PR}^{2}=\mathrm{PT}^{2}+\mathrm{ST}^{2}-2 . \mathrm{ST} . \frac{\frac{Q R}{2}}{2}+\frac{Q R^{2}}{4} \ldots 1$
Similarly in \triangle PTS
$\mathrm{PS}^{2}=\mathrm{PT}^{2}+\mathrm{ST}^{2} \ldots 2$
1 and 2 implies,
$P R^{2}=\mathrm{PS}^{2}-\mathrm{ST}^{2}+S T^{2}-2 . S T \cdot \frac{Q R}{2}+\frac{Q R^{2}}{4}$
$\Rightarrow P R^{2}=P S^{2}-S T \cdot Q R+\frac{Q R^{2}}{4}$
PROVED.
Q. 4. In $\triangle A B C$, point M is the mid pointof side $B C$.

If, $A B^{2}+A C^{2}=290 \mathrm{~cm}^{2}, A M=8 \mathrm{~cm}$, find $B C$.

Fig. 2.29

Answer : Given $\mathrm{AB}^{2}+\mathrm{AC}^{2}=290 \mathrm{~cm}^{2}, \mathrm{AM}=8 \mathrm{~cm}, \mathrm{BM}=\mathrm{MC}$
According to formula,
$\mathrm{AM}^{2}=\frac{A B^{2}+A C^{2}}{2}-\frac{B C^{2}}{4}$
$\Rightarrow 64=\frac{290}{2}-\frac{B C^{2}}{4}$
$\Rightarrow 64-\frac{290}{2}=-\frac{B C^{2}}{4}$
$\Rightarrow B C^{2}=324$
$B C=18$.
Thus $B C=18 \mathrm{~cm}$.
Q. 5. In figure 2.30, point T is in the interior of rectangle PQRS, Prove that, TS $^{2}+$ $T Q^{2}=T P^{2}+T R^{2}(A s$ shown in the figure, draw seg $A B| |$ side $S R$ and $A-T-B)$

Fig. 2.30

Answer : From figure,
In $\triangle \mathrm{PAT}, \angle \mathrm{PAT}=90^{\circ}$
$T P^{2}=A T^{2}+P A^{2} \ldots 1$
In $\triangle \mathrm{AST}, \angle \mathrm{SAT}=90^{\circ}$
$\mathrm{TS}^{2}=\mathrm{AT}^{2}+\mathrm{SA}^{2} \ldots 2$
In $\triangle \mathrm{QBT}, \angle \mathrm{QBT}=90^{\circ}$
$T Q^{2}=B T^{2}+\mathrm{QB}^{2}$
In $\triangle \mathrm{BTR}, \angle \mathrm{RBT}=90^{\circ}$
$\mathrm{TR}^{2}=\mathrm{BT}^{2}+\mathrm{BR}^{2} \ldots 4$
$\mathrm{TS}^{2}+\mathrm{TQ}^{2}=\mathrm{AT}^{2}+\mathrm{SA}^{2}+\mathrm{BT}^{2}+\mathrm{QB}^{2}[$ Adding 2 and 3$]$
$\Rightarrow T S^{2}+T Q^{2}=A T^{2}+P A^{2}+B T^{2}+B R^{2}[S A=B R, Q B=A P]$
$\Rightarrow \mathrm{TS}^{2}+\mathrm{TQ}^{2}=\mathrm{TP}^{2}+\mathrm{TR}^{2}[$ From 1 and 4$]$
PROVED.

Problem Set 2

Q. 1. A. Some questions and their alternative answers are given. Select the correct alternative.

Out of the following which is the Pythagorean triplet?
A. $(1,5,10)$
B. $(3,4,5)$
C. $(2,2,2)$
D. $(5,5,2)$

Answer : A Pythagorean triplet consists of three positive integers (l, b, h) such that
$h^{2}+b^{2}=h^{2}$
And $(3,4,5)$ is a Pythagorean triplet as,
$5^{2}=3^{2}+4^{2}$
Q. 1. B. Some questions and their alternative answers are given. Select the correct alternative.

In a right-angled triangle, if sum of the squares of the sides making right angle is 169 then what is the length of the hypotenuse?
A. 15
B. 13
C. 5
D. 12

Answer : Given,
Sum of the squares of the sides making right angle $=169$
$\Rightarrow(\text { base })^{2}+(\text { perpendicular })^{2}=169$
But we know, By Pythagoras's theorem
$(\text { Hypotenuse })^{2}=(\text { base })^{2}+(\text { Perpendicular })^{2}$
$\Rightarrow(\text { Hypotenuse })^{2}=169$
\Rightarrow Hypotenuse $=13$ units.
Q. 1. C. Some questions and their alternative answers are given. Select the correct alternative.

Out of the dates given below which date constitutes a Pythagorean triplet?
A. 15/08/17
B. 16/08/16
C. $3 / 5 / 17$
D. 4/9/15

Answer : A Pythagorean triplet consists of three positive integers (l, b, h) such that
$h^{2}+b^{2}=h^{2}$

And 15/08/17 is a Pythagorean triplet as,
$15^{2}+8^{2}=17^{2}$
i.e. $225+64=289$
Q. 1. D. Some questions and their alternative answers are given. Select the correct alternative.

If a, b, c are sides of a triangle and $a^{2}+b^{2}=c^{2}$, name the type of triangle.
A. Obtuse angled triangle
B. Acute angled triangle
C. Right angled triangle
D. Equilateral triangle

Answer: As, the sides of right-angled triangles satisfies the Pythagoras theorem, i.e.
$(\text { Hypotenuse })^{2}=(\text { base })^{2}+(\text { Perpendicular })^{2}$
Q. 1. E. Some questions and their alternative answers are given. Select the correct alternative.

Find perimeter of a square if its diagonal is $102 \mathbf{c m}$.
A. 10 cm
B. $40 \sqrt{2} \mathrm{~cm}$
C. 20 cm
D. 40 cm

Answer : We know that,
Diagonal of a square $=\sqrt{ } 2 \mathrm{a}$

Where ' a ' is the side of the triangle.
$\Rightarrow \sqrt{ } 2 \mathrm{a}=10 \sqrt{ } 2$
$\Rightarrow \mathrm{a}=10 \mathrm{~cm}$
Also, we know
Perimeter of square $=4 \mathrm{a}$
Where 'a' is the side of the triangle
\therefore Perimeter of given square $=4(10)=40 \mathrm{~cm}$
Q. 1. F. Some questions and their alternative answers are given. Select the correct alternative.

Altitude on the hypotenuse of a right angled triangle divides it in two parts of lengths 4 cm and 9 cm . Find the length of the altitude.
A. 9 cm
B. 4 cm
C. 6 cm
D. $2 \sqrt{6} \mathrm{~cm}$

Answer :

Let ABC be a right-angled triangle, at B , and BP be the altitude on hypotenuse that divides it in two parts such that,
$A P=4 \mathrm{~cm}$
$\mathrm{PC}=9 \mathrm{~cm}$

As, ABC, ABP and CBP are right-angled triangles, therefore they all satisfy Pythagoras theorem i.e.
$(\text { Hypotenuse })^{2}=(\text { base })^{2}+(\text { Perpendicular })^{2}$
\therefore In $\triangle A B C$
$A B^{2}+B C^{2}=A C^{2}$
$\Rightarrow A B^{2}+B C^{2}=(A P+C P)^{2}$
$\Rightarrow A B^{2}+B C^{2}=(4+9)^{2}=13^{2}$
$\Rightarrow A B^{2}+B C^{2}=169[1]$
$\therefore \ln \triangle A B P$
$A P^{2}+B P^{2}=A B^{2}$
$\mathrm{AP}^{2}+4^{2}=\mathrm{AB}^{2}[2]$
$\therefore \ln \triangle \mathrm{CBP}$
$\mathrm{CP}^{2}+\mathrm{BP}^{2}=\mathrm{BC}^{2}$
$\Rightarrow 9^{2}+\mathrm{BP}^{2}=\mathrm{BC}^{2}[3]$
Adding [2] and [3], we get
$A P^{2}+4^{2}+9^{2}+B P^{2}=A B^{2}+B C^{2}$
$\Rightarrow 2 \mathrm{AP}^{2}+16+81=169$ [From 1]
$\Rightarrow 2 \mathrm{AP}^{2}=72$
$\Rightarrow \mathrm{AP}^{2}=36$
$\Rightarrow A P=6 \mathrm{~cm}$
Hence, length of Altitude is 6 cm .
Q. 1. G. Some questions and their alternative answers are given. Select the correct alternative.

Height and base of a right angled triangle are $\mathbf{2 4} \mathbf{~ c m}$ and 18 cm find the length of its hypotenuse
A. 24 cm
B. 30 cm
C. 15 cm
D. 18 cm

Answer : By Pythagoras theorem
$(\text { Hypotenuse })^{2}=(\text { base })^{2}+(\text { Perpendicular })^{2}$
Given,
Base $=18 \mathrm{~cm}$

Perpendicular $=$ Height $=24 \mathrm{~cm}$
\Rightarrow Hypotenuse $^{2}=24^{2}+18^{2}$
\Rightarrow Hypotenuse $^{2}=576+324$
\Rightarrow Hypotenuse $^{2}=900$
\Rightarrow Hypotenuse $=30 \mathrm{~cm}$
Q. 1. H. Some questions and their alternative answers are given. Select the correct alternative.

In $D A B C, A B=6 \sqrt{3} \mathrm{~cm}, A C=12 \mathrm{~cm}, B C=6 \mathrm{~cm}$. Find measure of $\angle A$.
A. 30°
B. 60°
C. 90°
D. 45°

Answer: As,
$(6 \sqrt{3})^{2}+6^{2}=12^{2}$
$\Rightarrow A B^{2}+\mathrm{BC}^{2}=A C^{2}$
i.e. sides of the triangle ABC satisfy the Pythagoras theorem
$(\text { Hypotenuse })^{2}=(\text { base })^{2}+(\text { Perpendicular })^{2}$
$\therefore \mathrm{ABC}$ is a right-angled triangle with hypotenuse as $A C$
Now,
$\mathrm{BC}=\frac{1}{2} \mathrm{AC}$
By converse of $30^{\circ}-60^{\circ}-90^{\circ}$ triangle theorem i.e.
In a right-angled triangle, if one side is half of the hypotenuse then the angle
Opposite to that side is 30°.
$\angle \mathrm{A}=30^{\circ}$

Q. 2. A. Solve the following examples.

Find the height of an equilateral triangle having side 2a.

Answer :

Let $A B C$ be an equilateral triangle,
Let AP be a perpendicular on side BC from A.
To find: : eight of triangle = AP
$A s, A B C$ is an equilateral triangle we have
$\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=2 \mathrm{a}$
Also, we know that Perpendicular from a vertex to corresponding side in an equilateral triangle bisects the side
$\Rightarrow \mathrm{BP}=\mathrm{CP}=\frac{1}{2} \mathrm{BC}={ }^{\prime} \mathrm{a}^{\prime}$
Now, In $\triangle A B P$, By Pythagoras theorem
$(\text { Hypotenuse })^{2}=(\text { base })^{2}+(\text { Perpendicular })^{2}$
$\Rightarrow A B^{2}=B P^{2}+A P^{2}$
$\Rightarrow(2 \mathrm{a})^{2}=\mathrm{a}^{2}+\mathrm{AP}^{2}$
$\Rightarrow A P^{2}=4 a^{2}-a^{2}$
$\Rightarrow A P^{2}=3 a^{2}$
$\Rightarrow \mathrm{AP}=\mathrm{a} \sqrt{3}$
Q. 2. B. Solve the following examples.

Do sides $\mathbf{7 c m}, \mathbf{2 4 c m}, 25 \mathrm{~cm}$ form a right angled triangle? Give reason.
Answer: Yes,
Because
$7^{2}+24^{2}=25^{2}$ [i.e. $49+576=625$]
As, sides satisfy the Pythagoras theorem, i.e.
$(\text { Hypotenuse })^{2}=(\text { base })^{2}+(\text { Perpendicular })^{2}$
They do form a right-angled triangle.
Q. 2. C. Solve the following examples.

Find the length a diagonal of a rectangle having sides 11 cm and 60 cm .

Answer :

Let $A B C D$ be a rectangle, with
$A B=C D=60 \mathrm{~cm}$
$B C=D A=11 \mathrm{~cm}$
And AC be a diagonal.
As, $\angle A=90^{\circ}$
ADC is a right-angled triangle, By Pythagoras Theorem i.e.
$(\text { Hypotenuse })^{2}=(\text { base })^{2}+(\text { Perpendicular })^{2}$
$A C^{2}=(C D)^{2}+(D A)^{2}$
$\Rightarrow A C^{2}=60^{2}+11^{2}$
$\Rightarrow A C^{2}=3600+121$
$\Rightarrow A C^{2}=3721$
$\Rightarrow A C=61 \mathrm{~cm}$

Q. 2. D. Solve the following examples.

Find the length of the hypotenuse of a right angled triangle if remaining sides are 9 cm and 12 cm .

Answer : In a right-angled triangle

By Pythagoras theorem
$(\text { Hypotenuse })^{2}=(\text { base })^{2}+(\text { Perpendicular })^{2}$
Given,
Other sides are 9 cm and 12 cm
\Rightarrow Hypotenuse $^{2}=9^{2}+12^{2}$
\Rightarrow Hypotenuse $^{2}=81+144$
\Rightarrow Hypotenuse $^{2}=225$
\Rightarrow Hypotenuse $=15 \mathrm{~cm}$
Q. 2. E. Solve the following examples.

A side of an isosceles right angled triangle is \mathbf{x}. Find its hypotenuse.
Answer : In a right-angled triangle
By Pythagoras theorem
$(\text { Hypotenuse })^{2}=(\text { base })^{2}+(\text { Perpendicular })^{2}$
As, the triangle is isosceles
Base $=$ Perpendicular $=x$
[Hypotenuse can't be equal to any of the sides, because hypotenuse is the greatest side in a right-angled triangle and it must be greater than other two sides]
$\Rightarrow(\text { Hypotenuse })^{2}=x^{2}+x^{2}$
$\Rightarrow(\text { Hypotenuse })^{2}=2 x^{2}$
\Rightarrow Hypotenuse $=x \sqrt{ } 2$
Q. 2. F. Solve the following examples.

In $\triangle P Q R ; P Q=\sqrt{8}, Q R=\sqrt{5}, P R=\sqrt{3}$ Is $\triangle P Q R$ a right angled triangle? If yes, which angle is of 90° ?

Answer: As,
$(\sqrt{ } 5)^{2}+(\sqrt{ } 3)^{2}=(\sqrt{ } 8)^{2}$
$\Rightarrow \mathrm{QR}^{2}+\mathrm{PR}^{2}=\mathrm{PQ}^{2}$
i.e. sides of the triangle ABC satisfy the Pythagoras theorem
$(\text { Hypotenuse })^{2}=(\text { base })^{2}+(\text { Perpendicular })^{2}$
$\therefore \mathrm{PQR}$ is a right-angled triangle at R [As hypotenuse is PQ].
Q. 3. In $\triangle \mathrm{RAT}, \angle \mathrm{S}=90^{\circ}, \angle \mathrm{T}=30^{\circ}, \mathrm{RT}=12 \mathrm{~cm}$ then find RS and ST.

Answer :

As, $\angle \mathrm{S}=90^{\circ}$, and $\angle \mathrm{T}=30^{\circ}$ and $\mathrm{RT}=12 \mathrm{~cm}$ is given.
Clearly, RTS is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.
We know, Property of $30^{\circ}-60^{\circ}-90^{\circ}$ triangle i.e.
If acute angles of a right angled-triangle are 30° and 60°, then the side opposite
30° angle is half of the hypotenuse and the side opposite to 60° angle is $\frac{\sqrt{3}}{2}$ times of hypotenuse.
$\Rightarrow \mathrm{RS}=\frac{1}{2} \times \mathrm{RT}=\frac{1}{2}(12)=6 \mathrm{~cm}$
And
$\mathrm{ST}=\frac{\sqrt{3}}{2} \times \mathrm{RT}=\frac{\sqrt{3}}{2} \times 12=6 \sqrt{3} \mathrm{~cm}$
Q. 4. Find the diagonal of a rectangle whose length is 16 cm and area is 192 sq.cm.

Answer : Given,
Length of rectangle, $I=16 \mathrm{~cm}$
Breadth of rectangle $=\mathrm{b}$
Area of rectangle $=$ length \times breadth
$\Rightarrow 192=16 \mathrm{~b}$
$\Rightarrow \mathrm{b}=12 \mathrm{~cm}$
Also, we know that
Length of diagonal $=\sqrt{ }\left(l^{2}+b^{2}\right)$
Where, $\mathrm{I}=$ length and $\mathrm{b}=$ breadth
\Rightarrow Length of diagonal $=\sqrt{ }\left(16^{2}+12^{2}\right)$
$=\sqrt{ }(256+144)=20 \mathrm{~cm}$
Q. 5. Find the length of the side and perimeter of an equilateral triangle whose height is $\sqrt{3} \mathrm{~cm}$.

Answer :

Let $A B C$ be an equilateral triangle,
Let AP be a perpendicular on side BC from A.
To find: Height of triangle =AP
$\mathrm{As}, \mathrm{ABC}$ is an equilateral triangle we have
$\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=\mathrm{A}^{\prime}$
Also, we know that Perpendicular from a vertex to corresponding side in an equilateral triangle bisects the side
$\Rightarrow \mathrm{BP}=\mathrm{CP}=\frac{1}{2} \mathrm{BC}=\frac{1}{2} \mathrm{a}$
Now, In $\triangle A B P$, By Pythagoras theorem
$(\text { Hypotenuse })^{2}=(\text { base })^{2}+(\text { Perpendicular })^{2}$
$\Rightarrow A B^{2}=B P^{2}+A P^{2}$
$\Rightarrow a^{2}=\left(\frac{1}{2} a\right)^{2}+A P^{2}$
$\Rightarrow A P^{2}=a^{2}-\frac{1}{4} a^{2}=\frac{3}{4} a^{2}$
$\Rightarrow \mathrm{AP}=\frac{\sqrt{3}}{2} \mathrm{a}$
Given,
Height $=\sqrt{ } 3$
$\Rightarrow \frac{\sqrt{3}}{2} \mathrm{a}=\sqrt{3}$
$\Rightarrow \mathrm{a}=2 \mathrm{~cm}$
Also, Perimeter of equilateral triangle $=3 \mathrm{a}$
Where 'a' depicts side of equilateral triangle.
\therefore Perimeter $=3(2)=6 \mathrm{~cm}$
Q. 6. In $\triangle A B C \operatorname{seg} A P$ is a median. If $B C=18, A B^{2}+A C^{2}=260$ Find $A P$.

Answer:

We know, By Apollonius theorem
In $\triangle \mathrm{ABC}$,
If P is the midpoint of side $B C$, then $A B^{2}+A C^{2}=2 A P^{2}+2 B P^{2}$
Given that, $A P$ is median i.e. P is the mid-point of $B C$
$\mathrm{BP}=\mathrm{CP}=\frac{1}{2} \mathrm{BC}=9$
And $B C=18 \mathrm{~cm}$
And $A B^{2}+A C^{2}=260$
$\Rightarrow 260=2 \mathrm{AP}^{2}+2(9)^{2}$
$\Rightarrow 260=2 A P^{2}+162$
$\Rightarrow 98=2 \mathrm{AP}^{2}$
$\Rightarrow A P^{2}=49$
$\Rightarrow \mathrm{AP}=7$ units
Q. 7. $\triangle A B C$ is an equilateral triangle. Point P is on base $B C$ such that $P C=$ $-\frac{1}{3} B C$. if $A B=6 \mathrm{~cm}$ find $A P$.

Answer :

$A B C$ be an equilateral triangle,
Point P is on base $B C$, such that
$P C=\frac{1}{3} B C$
Let us construct $A M$ perpendicular on side $B C$ from A.
As, $A B C$ is an equilateral triangle we have
$A B=B C=C A=6 \mathrm{~cm}$
Also, we know that Perpendicular from a vertex to corresponding side in an equilateral triangle bisects the side
$\Rightarrow \mathrm{BM}=\mathrm{CM}=\frac{1}{2} \mathrm{BC}=3 \mathrm{~cm}$
Now, In $\triangle A C M$, By Pythagoras theorem
$(\text { Hypotenuse })^{2}=(\text { base })^{2}+(\text { Perpendicular })^{2}$
$\Rightarrow \mathrm{CA}^{2}=\mathrm{CM}^{2}+\mathrm{AM}^{2}$
$\Rightarrow(6)^{2}=(3)^{2}+\mathrm{AM}^{2}$
$\Rightarrow 36=9+\mathrm{AM}^{2}$
$\Rightarrow \mathrm{AM}^{2}=27[1]$
As,
$\mathrm{PC}=\frac{1}{3} \mathrm{BC}$
$\mathrm{CM}=\frac{1}{2} \mathrm{BC}$
We have,
$C M-P C=P M$
$\Rightarrow \mathrm{PM}=\frac{1}{2} \mathrm{BC}-\frac{1}{3} \mathrm{BC}$
$\Rightarrow \mathrm{PM}=\frac{1}{6} \mathrm{BC}=\frac{1}{6}(6)$
$\Rightarrow P M=1 \mathrm{~cm}$
Now, In right angled triangle AMP, By Pythagoras theorem
$(A P)^{2}=(A M)^{2}+(P M)^{2}$
$\Rightarrow(\mathrm{AP})^{2}=27+1^{2}$
$\Rightarrow A P^{2}=28$
$\Rightarrow A P=2 \sqrt{ } 7 \mathrm{~cm}$
Q. 8. From the information given in the figure 2.31, prove that $\mathbf{P M}=\mathbf{P N}=\sqrt{3} \times \mathrm{a}$

Fig. 2.31

Answer : In $\triangle P Q S$ and $\triangle P S R$, By Pythagoras theorem
i.e. $(\text { Hypotenuse })^{2}=(\text { base })^{2}+(\text { Perpendicular })^{2}$
$\mathrm{PQ}^{2}=\mathrm{QS}^{2}+\mathrm{PS}^{2}[1]$
$P R^{2}=S R^{2}+\mathrm{PS}^{2}[2]$
Subtracting [2] from [1],
$P Q^{2}-P R^{2}=Q S^{2}-S R^{2}$
$\Rightarrow \mathrm{a}^{2}-\mathrm{a}^{2}=\mathrm{QS}^{2}-\mathrm{SR}^{2}$
$\Rightarrow \mathrm{QS}^{2}=\mathrm{SR}^{2}$
$\Rightarrow Q S=S R$
$\Rightarrow \mathrm{QS}=\mathrm{SR}=\frac{1}{2} \mathrm{QR}=\frac{\mathrm{a}}{2}$
Also,
$M S=M Q+Q S$
$\Rightarrow \mathrm{MS}=\mathrm{a}+\frac{\mathrm{a}}{2}=\frac{3 \mathrm{a}}{2}$
And
$S N=S R+R N$
$\Rightarrow \mathrm{SN}=\frac{\mathrm{a}}{2}+\mathrm{a}=\frac{3 \mathrm{a}}{2}$
In \triangle PSM and $\triangle \mathrm{PSN}$, By Pythagoras theorem

$$
P M^{2}=P S^{2}+M S^{2}
$$

$$
\Rightarrow \mathrm{PN}^{2}=\mathrm{PS}^{2}+\left(\frac{3 \mathrm{a}}{2}\right)^{2}[4]
$$

$$
\mathrm{PN}^{2}=\mathrm{PS}^{2}+\mathrm{SN}^{2}
$$

$$
\Rightarrow \mathrm{PN}^{2}=\mathrm{PS}^{2}+\left(\frac{3 \mathrm{a}}{2}\right)^{2}
$$

From [3] and [4]
$\mathrm{PM}^{2}=\mathrm{PN}^{2}$
$\Rightarrow \mathrm{PM}=\mathrm{PN}$
Hence Proved.
Q. 9. Prove that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.

Answer : Let $A B C D$ be a parallelogram, with $A B=C D$; $A B \| C D$ and $B C=A D ; B C \|$ AD.

Construct AE $\perp \mathrm{CD}$ and extend CD to F such that, $\mathrm{BF} \perp \mathrm{CF}$.

In $\triangle A E D$ and $\triangle B C F$
$A E=B F[$ Distance between two parallel lines i.e. AB and CD]
$A D=B C$ [opposite sides of a parallelogram are equal]
$\angle A E D=\angle B F C$ [Both 90°]
$\triangle A E D \cong \triangle B C F$ [By Right Angle - Hypotenuse - Side Criteria]
$\Rightarrow \mathrm{DE}=\mathrm{CF}$ [Corresponding sides of congruent triangles are equal] [1]
In \triangle BFD, By Pythagoras theorem i.e.
$(\text { Hypotenuse })^{2}=(\text { base })^{2}+(\text { Perpendicular })^{2}$

$$
\begin{aligned}
& \mathrm{BD}^{2}=\mathrm{DF}^{2}+\mathrm{BF}^{2} \\
& \Rightarrow \mathrm{BD}^{2}=(\mathrm{CD}+\mathrm{CF})^{2}+\mathrm{BF}^{2}[2]
\end{aligned}
$$

In \triangle AEC, By Pythagoras theorem
$A C^{2}=A E^{2}+C E^{2}$
$\Rightarrow A C^{2}=A E^{2}+(C D-A E)^{2}$
$\Rightarrow \mathrm{AC}^{2}=\mathrm{BF}^{2}+(\mathrm{CD}-\mathrm{CF})^{2}[\mathrm{As}, \mathrm{AE}=\mathrm{BF}$ and $\mathrm{CF}=\mathrm{AE}][2]$
In $\triangle B C F$, By Pythagoras theorem,
$\mathrm{BC}^{2}=\mathrm{BF}^{2}+\mathrm{CF}^{2}$
$\mathrm{BF}^{2}=\mathrm{BC}^{2}-\mathrm{CF}^{2}[3]$
Adding [2] and [3]

$$
\begin{aligned}
& \mathrm{BD}^{2}+A C^{2}=2 \mathrm{BF}^{2}+(C D+C F)^{2}+(C D-C F)^{2} \\
& \Rightarrow \mathrm{BD}^{2}+A C^{2}=2 B C^{2}-2 C F^{2}+C D^{2}+C F^{2}+2 C D \cdot C F+C D^{2}+C F^{2}-2 C D \cdot C F \\
& \Rightarrow \mathrm{BD}^{2}+A C^{2}=2 B C^{2}+2 C D^{2} \\
& \Rightarrow \mathrm{BD}^{2}+A C^{2}=B C^{2}+B C^{2}+C D^{2}+C D^{2} \\
& \Rightarrow B D^{2}+A C^{2}=A B^{2}+B C^{2}+C D^{2}+A D^{2}[\text { since } B C=A D \text { and } A B=C D]
\end{aligned}
$$

Hence, the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.
Q. 10. Pranali and Prasad started walking to the East and to the North respectively, from the same point and at the same speed. After 2 hours distance between them was $15 \sqrt{2} \mathrm{~km}$. Find their speed per hour.

Answer :

Let their speed be ' x ' km/h
We know, distance $=$ speed \times time
In two hours,
Distance travelled by both = ' $2 x$ ' km
Let their starting point be ' O ', and Pranali and Prasad reach the point A in the East and point B in the north direction respectively.

Clearly, AOB is a right-angled triangle, So By Pythagoras theorem
$(\text { Hypotenuse })^{2}=(\text { base })^{2}+(\text { Perpendicular })^{2}$
$(A B)^{2}=(O A)^{2}+(O B)^{2}$
As, $A B=$ distance between them $=15 \sqrt{ } 2 \mathrm{~km}$
And $O A=O B=$ distance travelled by each $=2 x$
$\Rightarrow(15 \sqrt{ } 2)^{2}=(2 x)^{2}+(2 x)^{2}$
$\Rightarrow 450=8 x^{2}$
$\Rightarrow x^{2}=56.25$
$\Rightarrow x=7.5 \mathrm{~km} / \mathrm{h}$
Q. 11. In $\triangle \mathrm{ABC}, \angle \mathrm{BAC}=90^{\circ}$, seg BL and seg $C M$ are medians of $\triangle \mathrm{ABC}$. Then prove that : $4\left(B L^{2}+C M^{2}\right)=5 B C^{2}$

Fig. 2.32

Answer :

We know, By Apollonius theorem
In $\triangle A B C$, if L is the midpoint of side $A C$, then $A B^{2}+B C^{2}=2 B L^{2}+2 A L^{2}$
Given that, $B L$ is median i.e. L is the mid-point of $C A$
$\mathrm{CL}=\mathrm{AL}=\frac{1}{2} \mathrm{AC}$
$\Rightarrow A B^{2}+B C^{2}=2 B L^{2}+2 A L^{2}$
$\Rightarrow A B^{2}+B C^{2}=2 B L^{2}+2\left(\frac{A C}{2}\right)^{2}$
$\Rightarrow \mathrm{AB}^{2}+\mathrm{BC}^{2}=2 \mathrm{BL}^{2}+\frac{\mathrm{AC}^{2}}{2}$ [1]
Also, if M is the midpoint of side $A B$, then $A C^{2}+B C^{2}=2 C M^{2}+2 B M^{2}$
Given that, $C M$ is median i.e. M is the mid-point of $B A$

$$
\begin{aligned}
& \mathrm{AM}=\mathrm{BM}=\frac{1}{2} \mathrm{AB} \\
& \Rightarrow \mathrm{AC}^{2}+\mathrm{BC}^{2}=2 \mathrm{CM}^{2}+2 \mathrm{BM}^{2} \\
& \Rightarrow \mathrm{AC}^{2}+\mathrm{BC}^{2}=2 \mathrm{CM}^{2}+2\left(\frac{\mathrm{AB}}{2}\right)^{2} \\
& \Rightarrow \mathrm{AC}^{2}+\mathrm{BC}^{2}=2 \mathrm{CM}^{2}+\frac{\mathrm{AB}^{2}}{2}
\end{aligned}
$$

Also, In $\triangle A B C$, By Pythagoras theorem i.e.
$(\text { Hypotenuse })^{2}=(\text { base })^{2}+(\text { Perpendicular })^{2}$
$\Rightarrow B C^{2}=A C^{2}+A B^{2}[3]$
Adding [1] and [2]

$$
\begin{aligned}
& \Rightarrow \mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{AC}^{2}+\mathrm{BC}^{2}=2 \mathrm{BL}^{2}+\frac{\mathrm{AC}^{2}}{2}+2 \mathrm{CM}^{2}+\frac{\mathrm{AB}^{2}}{2} \\
& \Rightarrow \frac{\mathrm{AB}^{2}}{2}+\frac{\mathrm{AC}^{2}}{2}+2 \mathrm{BC}^{2}=2 \mathrm{BL}^{2}+2 \mathrm{CM}^{2} \\
& \Rightarrow \mathrm{AB}^{2}+\mathrm{AC}^{2}+4 \mathrm{BC}^{2}=4\left(\mathrm{BL}^{2}+\mathrm{CM}^{2}\right) \\
& \Rightarrow \mathrm{BC}^{2}+4 \mathrm{BC}^{2}=4\left(\mathrm{BL}^{2}+\mathrm{CM}^{2}\right)[\text { From } 3] \\
& \Rightarrow 5 \mathrm{BC}^{2}=4\left(\mathrm{BL}^{2}+\mathrm{CM}^{2}\right)
\end{aligned}
$$

Hence Proved.
Q. 12. Sum of the squares of adjacent sides of a parallelogram is $130 \mathrm{sq} . \mathrm{cm}$ and length of one of its diagonals is 14 cm . Find the length of the other diagonal.

Answer : Let $A B C D$ be a parallelogram, with $A B=C D ; A B \| C D$ and $B C=A D ; B C \|$ AD.

Construct $\mathrm{AE} \perp \mathrm{CD}$ and extend CD to F such that, $\mathrm{BF} \perp \mathrm{CF}$.

Given: sum of squares of adjacent side $=130$
$\Rightarrow C D^{2}+B C^{2}=130$ and
Length of one diagonal $=14 \mathrm{~cm}$ [let it be AC]
To Find: length of the other diagonal, BD
In $\triangle A E D$ and $\triangle B C F$
$A E=B F[D i s t a n c e ~ b e t w e e n ~ t w o ~ p a r a l l e l ~ l i n e s ~ i . e . ~ A B ~ a n d ~ C D] ~] ~$
$A D=B C$ [opposite sides of a parallelogram are equal]
$\angle A E D=\angle B F C$ [Both $\left.90^{\circ}\right]$
$\triangle A E D \cong \triangle B C F$ [By Right Angle - Hypotenuse - Side Criteria]
$\Rightarrow D E=C F[$ Corresponding sides of congruent triangles are equal] [1]
In $\triangle B F D$, By Pythagoras theorem i.e.
$(\text { Hypotenuse })^{2}=(\text { base })^{2}+(\text { Perpendicular })^{2}$
$\mathrm{BD}^{2}=\mathrm{DF}^{2}+\mathrm{BF}^{2}$
$\Rightarrow \mathrm{BD}^{2}=(\mathrm{CD}+\mathrm{CF})^{2}+\mathrm{BF}^{2}[2]$
In \triangle AEC, By Pythagoras theorem

$$
\begin{aligned}
& A C^{2}=A E^{2}+C E^{2} \\
& \Rightarrow A C^{2}=A E^{2}+(C D-A E)^{2}
\end{aligned}
$$

$\Rightarrow A C^{2}=\mathrm{BF}^{2}+(\mathrm{CD}-\mathrm{CF})^{2}[\mathrm{As}, \mathrm{AE}=\mathrm{BF}$ and $\mathrm{CF}=\mathrm{AE}][2]$
In $\triangle \mathrm{BCF}$, By Pythagoras theorem,
$\mathrm{BC}^{2}=\mathrm{BF}^{2}+\mathrm{CF}^{2}$
$\mathrm{BF}^{2}=\mathrm{BC}^{2}-\mathrm{CF}^{2}[3]$
Adding [2] and [3]

$$
\begin{aligned}
& B D^{2}+A C^{2}=2 B F^{2}+(C D+C F)^{2}+(C D-C F)^{2} \\
& \Rightarrow B D^{2}+A C^{2}=2 B C^{2}-2 C F^{2}+C D^{2}+C F^{2}+2 C D \cdot C F+C D^{2}+C F^{2}-2 C D \cdot C F \\
& \Rightarrow B D^{2}+A C^{2}=2 B C^{2}+2 C D^{2} \\
& \Rightarrow B D^{2}+14^{2}=2(130) \\
& \Rightarrow B D^{2}+196=260[\text { Using given data] } \\
& \Rightarrow B D^{2}=64 \\
& \Rightarrow B D=8 \mathrm{~cm}
\end{aligned}
$$

Hence, length of other diagonal is 8 cm .
Q. 13. In $\triangle A B C$, seg $A D \perp$ seg $B C D B=3 C D$. Prove that : $2 A B^{2}=2 A C^{2}+B C^{2}$

Fig. 2.33
Answer : Given,
$D B=3 C D$
Also,
$B C=C D+D B=C D+3 C D$
$\Rightarrow B C=4 C D[1]$
As, $A D \perp B C$, By Pythagoras theorem i.e.
$(\text { Hypotenuse })^{2}=(\text { base })^{2}+(\text { Perpendicular })^{2}$
In \triangle ACD
$A C^{2}=A D^{2}+C D^{2}[2]$
In $\triangle A B D$
$A B^{2}=A D^{2}+D B^{2}$
$\Rightarrow A B^{2}=A D^{2}+(3 C D)^{2}$
$\Rightarrow A B^{2}=A D^{2}+9 C D^{2}[3]$
Subtracting [2] from [3]
$\Rightarrow A B^{2}-A C^{2}=9 C D^{2}-C D^{2}$
$\Rightarrow A B^{2}=A C^{2}+8 C D^{2}$
$\Rightarrow 2 A B^{2}=2 A C^{2}+16 C D^{2}$
$\Rightarrow 2 A B^{2}=2 A C^{2}+(4 C D)^{2}$
$\Rightarrow 2 A B^{2}=2 A C^{2}+B C^{2}[$ From 1]
Hence Proved.
Q. 14. In an isosceles triangle, length of the congruent sides is 13 cm and its base is 10 cm . Find the distance between the vertex opposite the base and the centroid.

Answer:

Let $A B C$ be an isosceles triangle, In which $A B=A C=13 \mathrm{~cm}$ And $B C=10 \mathrm{~cm}$

Let $A M$ be median on $B C$ such that
$B M=C M=\frac{1}{2} B C=5 \mathrm{~cm}$
Let P be centroid on median $B C$

To Find : AP [Distance between vertex opposite the base and centroid]
We know, By Apollonius theorem
In $\triangle A B C$, if M is the midpoint of side $B C$, then $A B^{2}+A C^{2}=2 A M^{2}+2 B M^{2}$
Putting values, we get
$(13)^{2}+(13)^{2}=2 \mathrm{AM}^{2}+2(5)^{2}$
$\Rightarrow 169+169=2$ AM $^{2}+50$
$\Rightarrow 2 \mathrm{AM}^{2}=288$
$\Rightarrow \mathrm{AM}^{2}=144$
$\Rightarrow \mathrm{AM}=12 \mathrm{~cm}$

Let P be the centroid
As, Centroid divides median in a ratio $2: 1$
$\Rightarrow \mathrm{AP}: \mathrm{PM}=2: 1$
$\Rightarrow \mathrm{AP}=2 \mathrm{PM}$
Now, $A M=A P+P M$
$\Rightarrow A M=A P+\frac{A P}{2}=\frac{3}{2} A P$
$\Rightarrow A P=\frac{2}{3} A M=\frac{2}{3}(12)=8 \mathrm{~cm}$
Q. 15. In a trapezium $A B C D$, seg $A B \| \operatorname{seg} D C \operatorname{seg} B D \perp \operatorname{seg} A D, \operatorname{seg} A C \perp \operatorname{seg}$ $B C$, If $A D=15, B C=15$ and $A B=25$. Find $A(\square A B C D)$

Fig. 2.34

Answer:

Construct $D E \perp A B$ and $C F \perp A B$

In $\triangle A D B$, as $B D \perp A D$, By Pythagoras theorem i.e.
$(\text { Hypotenuse })^{2}=(\text { base })^{2}+(\text { Perpendicular })^{2}$
$(A B)^{2}=(A D)^{2}+(B D)^{2}$
$\Rightarrow 25^{2}=15^{2}+B D^{2}$
$\Rightarrow B^{2}=625-225=400$
$\Rightarrow B D=20 \mathrm{~cm}$
Similarly,
$A C=20 \mathrm{~cm}$
Now, In $\triangle A E D$ and $\triangle A B D$
$\angle A E D=\angle A D B\left[B o t h ~ 90^{\circ}\right]$
$\angle D A E=\angle D A E[$ Common]
$\triangle \mathrm{AED} \sim \triangle \mathrm{ABD}$ [By Angle-Angle Criteria]
$\Rightarrow \frac{D E}{B D}=\frac{A D}{A B}=\frac{A E}{A D}$ [Property of similar triangles]
As $A D=15 \mathrm{~cm}, B D=20 \mathrm{~cm}$ and $A B=25 \mathrm{~cm}$
$\Rightarrow \frac{\mathrm{DE}}{20}=\frac{15}{25}$
$\Rightarrow D E=12 \mathrm{~cm}$

Also,
$\frac{\mathrm{DE}}{\mathrm{BD}}=\frac{\mathrm{AE}}{\mathrm{AD}}$
$\Rightarrow \frac{12}{20}=\frac{\mathrm{AE}}{15}$
$\Rightarrow A E=9 \mathrm{~cm}$
Similarly, BF $=9 \mathrm{~cm}$

Now,
$\mathrm{DC}=\mathrm{EF}$ [By construction]
$D C=A B-D E-A E$
DC $=25-9-9=7 \mathrm{~cm}$
Also, we know
Area of trapezium $=\frac{1}{2} \times($ Sum of Parallel Sides $) \times$ Height
$=\frac{1}{2} \times(D C+A B) \times D E$
$=\frac{1}{2} \times(7+25) \times 12$
$=192 \mathrm{~cm}^{2}$
Q. 16. In the figure 2.35, \triangle P20QR is an equilateral triangle. Point S is on seg QR such that $\mathrm{QS}=\frac{1}{3} \mathrm{QR}$.

Prove that : $9 \mathrm{PS}^{2}=7 \mathrm{PQ}^{2}$

Fig. 2.35
Answer : As, $P Q R$ is an equilateral triangle,
Point S is on base QR, such that
$\mathrm{QS}=\frac{1}{3} \mathrm{QR}$

PT is perpendicular on side QR from P .
As, PQR is an equilateral triangle we have
$P Q=Q R=P R[1]$
Also, we know that Perpendicular from a vertex to corresponding side in an equilateral triangle bisects the side
$\Rightarrow \mathrm{QT}=\mathrm{TR}=\frac{1}{2} \mathrm{QR}=\frac{1}{2} \mathrm{PQ}$
Now, In \triangle PTQ, By Pythagoras theorem
$(\text { Hypotenuse })^{2}=(\text { base })^{2}+(\text { Perpendicular })^{2}$
$\Rightarrow \mathrm{PQ}^{2}=\mathrm{PT}^{2}+\mathrm{QT}^{2}$
$\Rightarrow \mathrm{PQ}^{2}=\mathrm{PT}^{2}+\left(\frac{1}{2} \mathrm{PQ}\right)^{2}$
$\Rightarrow \mathrm{PQ}^{2}=\mathrm{PT}^{2}+\frac{1}{4} \mathrm{PQ}^{2}$
$\Rightarrow \mathrm{PT}^{2}=\frac{3}{4} \mathrm{PQ}^{2}{ }_{[2]}$
As,
$\mathrm{QS}=\frac{1}{3} \mathrm{QR}$
$\mathrm{QT}=\frac{1}{2} \mathrm{QR}$
We have,
QT - QS = ST
$\Rightarrow \mathrm{ST}=\frac{1}{2} \mathrm{QR}-\frac{1}{3} \mathrm{QR}$
$\Rightarrow \mathrm{ST}=\frac{1}{6} \mathrm{QR}=\frac{1}{6} \mathrm{PQ}$

Now, In right angled triangle PST, By Pythagoras theorem

$$
\begin{aligned}
& (\mathrm{PS})^{2}=(\mathrm{ST})^{2}+(\mathrm{PT})^{2} \\
& \Rightarrow \mathrm{PS}^{2}=\left(\frac{1}{6} \mathrm{PQ}\right)^{2}+\frac{3}{4} \mathrm{PQ}^{2} \text { [From 2] } \\
& \Rightarrow \mathrm{PS}^{2}=\frac{\mathrm{PQ}^{2}}{36}+\frac{3}{4} \mathrm{PQ}^{2} \\
& \Rightarrow \mathrm{PS}^{2}=\frac{\mathrm{PQ}^{2}+27 \mathrm{PQ}^{2}}{36} \\
& \Rightarrow 36 \mathrm{PS}^{2}=28 \mathrm{PQ}^{2} \\
& \Rightarrow 9 \mathrm{PS}^{2}=7 \mathrm{PQ}^{2}
\end{aligned}
$$

Hence Proved.
Q. 17. Seg $P M$ is a median of $\triangle P Q R$. If $P Q=40, P R=42$ and $P M=29$, find $Q R$.

Answer:

We know, By Apollonius theorem
In $\triangle P Q R$, if M is the midpoint of side $Q R$, then $P Q^{2}+P R^{2}=2 P M^{2}+2 Q M^{2}$
Given that, PM is median i.e. M is the mid-point of QR
$\mathrm{QM}=\mathrm{MR}=\frac{1}{2} \mathrm{QR}$
And $\mathrm{PQ}=40, \mathrm{PR}=42, \mathrm{PM}=29$

Putting values,
$\Rightarrow(40)^{2}+(42)^{2}=2(29)^{2}+2(\mathrm{QM})^{2}$
$\Rightarrow 1600+1764=1682+2 \mathrm{QM}^{2}$
$\Rightarrow \mathrm{QM}^{2}=1682$
$\Rightarrow \mathrm{QM}=29$
$\Rightarrow Q R=2(29)=58$
Q. 18. Seg $A M$ is a median of $\triangle A B C$. If $A B=22, A C=34, B C=24$, find $A M$ Answer :

We know, By Apollonius theorem
In $\triangle A B C$, if M is the midpoint of side $B C$, then $A B^{2}+A C^{2}=2 A M^{2}+2 B M^{2}$
Given that,
$A B=22, A C=34, B C=24$
$A P$ is median i.e. P is the mid-point of $B C$
$\Rightarrow \mathrm{BP}=\mathrm{CP}=\frac{1}{2} \mathrm{BC}=12$
Putting values in equation
$\Rightarrow 22^{2}+34^{2}=2 A M^{2}+2(12)^{2}$

$$
\begin{aligned}
& \Rightarrow 484+1156=2 A M^{2}+288 \\
& \Rightarrow 1352=2 A M^{2} \\
& \Rightarrow A M^{2}=676 \\
& \Rightarrow A M=26
\end{aligned}
$$

