Circle

Practice Set 3.1

Q. 1. In the adjoining figure the radius of a circle with centre C is 6 cm , line $A B$ is a tangent at A. Answer the following questions.
(1) What is the measure of $\angle C A B$? Why?
(2) What is the distance of point C from line AB? Why?
(3) $d(A, B)=6 \mathrm{~cm}$, find $d(B, C)$.
(4) What is the measure of $\angle A B C$? Why?

Fig. 3.19

Answer : (1) ere CA is the radius of the circle and A is the point of contact of the tangent $A B$.
$\Rightarrow \angle C A B=90^{\circ}$ Using tangent-radius theorem which states that a tangent at any point of a circle is perpendicular to the radius at the point of contact.
(2) CA is the radius of the circle which is perpendicular to the tangent $A B$.

So, the perpendicular distance of line $A B$ from $C=C A=6 \mathrm{~cm}$
(3) In triangle ABC right-angled at A ,

Given $A B=6 \mathrm{~cm}$ and $C A=6 \mathrm{~cm}$
$B C^{2}=A B^{2}+C A^{2}\{$ Using Pythagoras theorem $\}$
$\Rightarrow \mathrm{BC}^{2}=6^{2}+6^{2}$
$\Rightarrow B C^{2}=36+36$
$\Rightarrow B C=\sqrt{ } 72$
$\Rightarrow B C=6 \sqrt{ } 2 \mathrm{~cm}$
(4) In triangle $A B C$ right-angled at A,

$$
\begin{aligned}
& A B=C A=6 \mathrm{~cm} \\
& \Rightarrow \angle A B C=\angle A C B\{\text { Angles opposite to equal sides are equal }\} \\
& \Rightarrow \angle A B C+\angle A C B+\angle B A C=180^{\circ}\{\text { Angle sum property of the triangle }\} \\
& \Rightarrow 2 \angle A B C=90^{\circ}\left\{\because \angle B A C=90^{\circ}\right\} \\
& \Rightarrow \angle A B C=45^{\circ}
\end{aligned}
$$

Q. 2. In the adjoining figure, O is the centre of the circle. From point R, seg $R M$ and seg RN are tangent segments touching the circle at M and N. If (OR) =10 cm and radius of the circle $=5 \mathrm{~cm}$, then
(1) What is the length of each tangent segment?
(2) What is the measure of $\angle \mathrm{MRO}$?
(3) What is the measure of $\angle \mathrm{MRN}$?

Fig. 3.20

Answer : (1) Here OM is the radius of the circle and M and N are the points of contact of MR and NR respectively.
$\Rightarrow \angle \mathrm{RMO}=90^{\circ}$ Using tangent-radius theorem which states that a tangent at any point of a circle is perpendicular to the radius at the point of contact.

In triangle ORM right-angled at M ,
Given that $\mathrm{OR}=10 \mathrm{~cm}$ and $\mathrm{OM}=5 \mathrm{~cm}\{$ Radius of the circle $\}$
$O R^{2}=\mathrm{OM}^{2}+\mathrm{RM}^{2}\{$ Using Pythagoras theorem $\}$
$\Rightarrow \mathrm{MR}^{2}=10^{2}-5^{2}$
$\Rightarrow \mathrm{MR}^{2}=100-25$
$\Rightarrow M R=\sqrt{ } 75$
$\Rightarrow M R=5 \sqrt{ } 3 \mathrm{~cm}$
Also, $\mathrm{RN}=5 \sqrt{ } 3 \mathrm{~cm}\{\because$ Tangents from the same external point are congruent to each other.\}
(2) $\tan R=\frac{O M}{M R}=\frac{5}{5 \sqrt{3}}$

$$
\begin{aligned}
& \Rightarrow \tan \mathrm{R}=\frac{1}{\sqrt{3}}=\tan 30^{\circ} \\
& \Rightarrow \angle \mathrm{MRO}=30^{\circ}
\end{aligned}
$$

(3) Similarly, $\angle \mathrm{NRO}=30^{\circ}$
$\Rightarrow \angle \mathrm{MRN}=\angle \mathrm{MRO}+\angle \mathrm{NRO}=30^{\circ}+30^{\circ}=60^{\circ}$
Q. 3. Seg RM and seg RN are tangent segments of a circle with centre O. Prove that seg OR bisects $\angle M R N$ as well as $\angle M O N$.

Fig. 3.21
Answer : In triangle MOR and triangle NOR,
$M R=N R\{\because$ Tangents from same external point are congruent to each other. $\}$
$\mathrm{OR}=\mathrm{OR}\{$ Common $\}$
$\mathrm{OM}=\mathrm{ON}$ \{Radius of the circle $\}$
$\Rightarrow \Delta \mathrm{MOR} \cong \Delta \mathrm{NOR}\{\mathrm{By}$ SSS $\}$
$\Rightarrow \angle \mathrm{ROM}=\angle \mathrm{RON}$

And $\angle \mathrm{MRO}=\angle \mathrm{NRO}$ \{C.P.C.T.\}
Hence proved that seg $O R$ bisects $\angle M R N$ as well as $\angle M O N$.
Q. 4. What is the distance between two parallel tangents of a circle having radius 4.5 cm ? Justify your answer.

Answer : Let BC and DE be the parallel tangents to a circle centered at A with point of contact O and H respectively. On joining OH , we find OH is the diameter of the circle. $\angle \mathrm{BOA}=90^{\circ}=\angle \mathrm{DHA}\{$ Using tangent-radius theorem which states that a tangent at any point of a circle is perpendicular to the radius at the point of contact.\}

Distance between BC and $\mathrm{DE}=\mathrm{OH}$
$\because \mathrm{OH}$ is perpendicular to BC and DE .
$\mathrm{OH}=2 \times 4.5 \mathrm{~cm}=9 \mathrm{~cm}$

Practice Set 3.2

Q. 1. Two circles having radii 3.5 cm and 4.8 cm touch each other internally. Find the distance between their centres.

Answer : Given: Two circles are touching each other internally.
\because The distance between the centres of the circles touching internally is equal to the difference of their radii.
\Rightarrow Distance between their centres $=4.8 \mathrm{~cm}-3.5 \mathrm{~cm}=1.3 \mathrm{~cm}$
Q. 2. Two circles of radii 5.5 cm and 4.2 cm touch each other externally. Find the distance between their centres.

Answer : Given: Two circles are touching each other externally
We know that if the circles touch each other externally, distance between their centres is equal to the sum of their radii.
\Rightarrow Distance between their centres $=5.5 \mathrm{~cm}+4.2 \mathrm{~cm}=9.7 \mathrm{~cm}$
Q. 3. If radii of two circles are 4 cm and 2.8 cm . Draw figure of these circles touching each other -
(i) externally
(ii) internally.

Answer:

Steps of construction:

1. Draw a circle with radius 4 cm and centre A.
2. Draw another circle with radius 2.8 cm and centre B such that they touch each other externally.

Steps of construction:

1. Draw a circle with radius 4 cm and centre A.
2. Draw another circle with radius 2.8 cm and centre B such that they touch each other internally.
Q. 4. In fig 3.27, the circles with centres P and Q touch each other at R. A line passing through R meets the circles at A and B respectively. Prove that -
(1) seg $A P \| \operatorname{seg} B Q$,
(2) $\triangle \mathrm{APR} \sim \triangle \mathrm{RQB}$, and
(3) Find $\angle R Q B$ if $\angle P A R=35^{\circ}$

Fig. 3.27

Answer : (1) In $\triangle \mathrm{APR}$,
$\mathrm{AP}=\mathrm{RP}\{$ Radius of the circle with centre P$\}$
$\angle P A R=\angle P R A$
In $\triangle R Q B$,
$\mathrm{RQ}=\mathrm{QB}\{$ Radius of the circle with centre Q$\}$
$\angle Q R B=\angle Q B R$
$\Rightarrow \angle P R A=\angle Q R B$ \{Vertically Opposite Angle $\}$
$\Rightarrow \angle \mathrm{PAR}=\angle \mathrm{QBR}\{$ From (1), (2) and (3) \}
\Rightarrow Alternate interior angles are equal.
$\Rightarrow \mathrm{AP} \| \mathrm{BQ}$
Hence, proved.
(2) In \triangle APR and $\triangle R Q B$,
$\angle \mathrm{PAR}=\angle \mathrm{QBR}$ and $\angle \mathrm{PRA}=\angle \mathrm{QRB}\{$ From (1) and (2) $\}$
$\Rightarrow \Delta A P R \sim \Delta R Q B\{A A\}$
Hence, proved.
(4) Given: $\angle P A R=35^{\circ}$
$\Rightarrow \angle \mathrm{QBR}=35^{\circ}=\angle \mathrm{QRB}$ \{Proved previously\}
In \triangle RQB,
$\Rightarrow \angle \mathrm{RQB}+\angle \mathrm{QRB}+\angle \mathrm{QBR}=180^{\circ}$ \{Angle sum property of the triangle $\}$
$\Rightarrow \angle \mathrm{RQB}+35^{\circ}+35^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{RQB}=180^{\circ}-70^{\circ}=110^{\circ}$
Q. 5. In fig 3.28 the circles with centres A and B touch each other at E. Line is a common tangent which touches the circles at C and D respectively. Find the length of seg CD if the radii Fig. 3.28 of the circles are $4 \mathrm{~cm}, 6 \mathrm{~cm}$.

Answer:

Given that two circles with centre A and B touch each other externally. We know that if the circles touch each other externally, distance between their centres is equal to the sum of their radii.
$\Rightarrow A B=(4+6) \mathrm{cm}=10 \mathrm{~cm}$
In $\triangle \mathrm{ABC}$ right-angles at A ,
$B C^{2}=C A^{2}+A B^{2}\{$ Using Pythagoras theorem $\}$
$\Rightarrow \mathrm{BC}^{2}=4^{2}+10^{2}$
$\Rightarrow B C^{2}=16+100$
$\Rightarrow B C=\sqrt{ } 116 \mathrm{~cm}$

In $\triangle \mathrm{DBC}$,
$\angle B D C=90^{\circ}$ because D is the point of contact of tangent $C D$ to circle centred B
$B C^{2}=C D^{2}+D B^{2}\{U s i n g$ Pythagoras theorem $\}$
$\Rightarrow C D^{2}=116-6^{2}$
$\Rightarrow C D^{2}=116-36$
$\Rightarrow C D=\sqrt{ } 80 \mathrm{~cm}=4 \sqrt{ } 5$

Practice Set 3.3

Q. 1. In figure 3.37 , points G, D, E, F are concyclic points of a circle with centre C.
$\angle E C F=70^{\circ}, \mathrm{m}(\operatorname{arc} \mathrm{DGF})=200^{\circ}$ find $\mathrm{m}(\operatorname{arc} \mathrm{DE})$ and $\mathrm{m}(\operatorname{arc} D E F)$.

Fig. 3.37

Answer : Given $\angle E C F=70^{\circ}$ and $\mathrm{m}(\operatorname{arc} \mathrm{DGF})=200^{\circ}$
We know that measure of major arc $=360^{\circ}$ - measure of minor arc
$m(\operatorname{arc} D G F)=360^{\circ}-m(\operatorname{arc} D F)$
$\Rightarrow \mathrm{m}(\operatorname{arc} \mathrm{DF})=360^{\circ}-200^{\circ}=160^{\circ}$
$\Rightarrow \angle D C F=160^{\circ}$
\because The measure of a minor arc is the measure of its central angle.
$\therefore \mathrm{m}(\operatorname{arc} \mathrm{DEF})=160^{\circ}$
So, $\angle D C E=\angle D C F-\angle E C F=160^{\circ}-70^{\circ}$
$\Rightarrow \angle D C E=90^{\circ}$
The measure of a minor arc is the measure of its central angle.
$\mathrm{m}(\operatorname{arc} \mathrm{DE})=90^{\circ}$
Q. 2. In fig 3.38Δ QRS is an equilateral triangle. Prove that,
(1) $\operatorname{arc} R S \cong \operatorname{arc} Q S \cong \operatorname{arc} Q R$
(2) $\mathrm{m}(\operatorname{arc}$ QRS $)=240^{\circ}$.

Fig. 3.38
Answer : (1) Two arcs are congruent if their measures and radii are equal.
$\because \Delta$ QRS is an equilateral triangle
$\therefore \mathrm{RS}=\mathrm{QS}=\mathrm{QR}$
$\Rightarrow \operatorname{arc} R S \cong \operatorname{arc} Q S \cong \operatorname{arc} Q R$
(2) Let O be the centre of the circle.
$\mathrm{m}(\operatorname{arc} \mathrm{QS})=\angle \mathrm{QOS}$
$\angle \mathrm{QOS}+\angle \mathrm{QOR}+\angle \mathrm{SOR}=360^{\circ}$
$\Rightarrow 3 \angle \mathrm{QOS}=360^{\circ}\{\because \Delta \mathrm{QRS}$ is an equilateral triangle $\}$
$\Rightarrow \angle \mathrm{QOS}=120^{\circ}$
$\mathrm{m}(\operatorname{arc} Q S)=120^{\circ}$
$\mathrm{m}($ arc QRS $)=360^{\circ}-120^{\circ}\left\{\because\right.$ Measure of a major arc $=360^{\circ}$ - measure of its corresponding minor arc\}
$\Rightarrow \mathrm{m}(\operatorname{arc}$ QRS $)=240^{\circ}$

Q. 3. In fig 3.39 chord $A B \cong$ chord $C D$, Prove that, arc $A C \cong \operatorname{arc} B D$

Fig. 3.39
Answer : : Chord AB \cong chord CD
 congruent circles) are congruent\}

Subtract $m(\operatorname{arc} C B)$ from above,

$$
\begin{aligned}
& m(\operatorname{arc} A B)-m(\operatorname{arc} C B)=m(\operatorname{arc} C D)-m(\operatorname{arc} C B) \\
& \Rightarrow m(\operatorname{arc} A C)=m(\operatorname{arc} B D) \\
& \Rightarrow \operatorname{arc} A C \cong \operatorname{arc} B D
\end{aligned}
$$

Hence, proved.

Practice Set 3.4

Q. 1. In figure 3.56, in a circle with centre O, length of chord $A B$ is equal to the radius of the circle. Find measure of each of the following.

Fig. 3.56
(1) $\angle A O B$ (2) $\angle A C B$
(3) arc AB (4) arc ACB.

Answer : (1) In $\triangle \mathrm{AOB}$,
$A B=O A=O B=$ radius of circle
$\Rightarrow \triangle \mathrm{AOB}$ is an equilateral triangle
$\angle \mathrm{AOB}+\angle \mathrm{ABO}+\angle \mathrm{BAO}=180^{\circ}$ \{Angle sum property $\}$
$\Rightarrow 3 \angle A O B=180^{\circ}$ \{All the angles are equal\}
$\angle \mathrm{AOB}=60^{\circ}$
(2) $\angle \mathrm{AOB}=2 \times \angle \mathrm{ACB}$ \{The measure of an inscribed angle is half the measure of the arc intercepted by it.\}
$\Rightarrow \angle \mathrm{ACB}=30^{\circ}$
(3) $\angle \mathrm{AOB}=60^{\circ}$
$\Rightarrow \operatorname{arc}(\mathrm{AB})=60^{\circ}$ \{The measure of a minor arc is the measure of its central angle. $\}$
(4) Using Measure of a major arc $=360^{\circ}$ - measure of its corresponding minor arc
$\Rightarrow \operatorname{arc}(\mathrm{ACB})=360^{\circ}-\operatorname{arc}(\mathrm{AB})$
$\Rightarrow \operatorname{arc}(\mathrm{ACB})=360^{\circ}-60^{\circ}=300^{\circ}$
Q. 2. In figure 3.57, $\square^{\square P Q S}$ is cyclic. Side $P Q \cong$ side $R Q . \angle P S R=110^{\circ}$, Find-

Fig. 3.57
(1) measure of $\angle \mathrm{PQR}$
(2) m (arc PQR)
(3) m(arc QR)
(4) measure of $\angle P R Q$

Answer : (1) Given PQRS is a cyclic quadrilateral.
\because Opposite angles of a cyclic quadrilateral are supplementary
$\Rightarrow \angle \mathrm{PSR}+\angle \mathrm{PQR}=180^{\circ}$
$\Rightarrow \angle \mathrm{PQR}=180^{\circ}-110^{\circ}$
$\Rightarrow \angle \mathrm{PQR}=70^{\circ}$
(2) $2 \times \angle \mathrm{PQR}=\mathrm{m}(\operatorname{arc} \mathrm{PR})\{$ The measure of an inscribed angle is half the measure of the arc intercepted by it.\}
$m(\operatorname{arc} P R)=140^{\circ}$
$\Rightarrow \mathrm{m}(\operatorname{arc} \mathrm{PQR})=360^{\circ}-140^{\circ}=220^{\circ}\left\{\right.$ Using Measure of a major arc $=360^{\circ}$ - measure of its corresponding minor arc\}
(3) Side $P Q \cong$ side $R Q$
$\therefore \mathrm{m}(\operatorname{arc} \mathrm{PQ})=\mathrm{m}(\operatorname{arc} \mathrm{RQ})\{$ Corresponding arcs of congruent chords of a circle (or congruent circles) are congruent\}
$\Rightarrow \mathrm{m}(\operatorname{arc} P Q R)=\mathrm{m}(\operatorname{arc} P Q)+\mathrm{m}(\operatorname{arc} R Q)$
$\Rightarrow \mathrm{m}(\operatorname{arc} P Q R)=2 \times \mathrm{m}(\operatorname{arc} P Q)$
$\Rightarrow \mathrm{m}(\operatorname{arc} \mathrm{PQ})=110^{\circ}$
(4) In $\triangle P Q R$,
$\angle \mathrm{PQR}+\angle \mathrm{QRP}+\angle \mathrm{RPQ}=180^{\circ}$ \{Angle sum property $\}$
$\Rightarrow \angle \mathrm{PRQ}+\angle \mathrm{RPQ}=180^{\circ}-\angle \mathrm{PQR}$
$\Rightarrow 2 \angle \mathrm{PRQ}=180^{\circ}-70^{\circ}\{\because$ side $\mathrm{PQ} \cong$ side RQ$\}$
$\Rightarrow \angle \mathrm{PRQ}=55^{\circ}$
Q. 3. ${ }^{\square M R P N}$ is cyclic, $\angle R=(5 x-13)^{\circ}, \angle N=(4 x+4)^{\circ}$. Find measures of \sqrt{R} and \sqrt{N}.

Answer : Given MRPN is a cyclic quadrilateral.
$\Rightarrow \angle R+\angle N=180^{\circ}$ \{Using Opposite angles of a cyclic quadrilateral are supplementary\}
$\Rightarrow(5 x-13)^{\circ}+(4 x+4)^{\circ}=180^{\circ}$
$\Rightarrow 9 x-9=180^{\circ}$
$\Rightarrow \mathrm{x}-1=20^{\circ}$
$\Rightarrow x=21^{\circ}$
$\angle R=(5 x-13)^{\circ}=5 \times 21-13=105-13=92^{\circ}$
$\angle N=(4 x+4)^{\circ}=4 \times 21+4=84+4=88^{\circ}$
Q. 4. In figure 3.58 , seg RS is a diameter of the circle with centre O. Point T lies in the exterior of the circle. Prove that \angle RTS is an acute angle.

Fig. 3.58

Answer :

Given RS is the diameter
$\Rightarrow \angle \mathrm{ROS}=180^{\circ}$
$m(\operatorname{arc} R S)=180^{\circ}$
Now, \angle RTS is an external angle.
$\angle R T S=\frac{1}{2}[m(\operatorname{arcRS})-m(\operatorname{arcPQ})]$
$\Rightarrow \angle R T S=\frac{1}{2}\left[180^{\circ}-m(\operatorname{arcPQ})\right]$
$\Rightarrow \angle R T S=90^{\circ}-\frac{1}{2} m(\operatorname{arcPQ})$
Hence, \angle RTS is an acute angle.
Q. 5. Prove that, any rectangle is a cyclic quadrilateral.

Answer:

In ABCD,
$\angle \mathrm{A}=90^{\circ}\left\{\because\right.$ angle of a rectangle is $\left.90^{\circ}.\right\}$
$\angle \mathrm{C}=90^{\circ}$ \{opposite angles are equals $\}$
$\Rightarrow \angle A+\angle C=180^{\circ}$
If opposite angles are supplementary, the quadrilateral is cyclic.
$\therefore \mathrm{ABCD}$ is cyclic.
Q. 6. In figure 3.59, altitudes YZ and XT of
Δ WXY intersect at P. Prove that,

Fig. 3.59
(1) WZPT is cyclic.
(2) Points X, Z, T, Y are concyclic.

Answer : (1)In WZPT,
$\angle \mathrm{WZP}=\angle \mathrm{WTP}=90^{\circ}\{\mathrm{YZ}$ and XT are the altitudes $\}$
If a pair of opposite angles of a quadrilateral is supplementary, then the quadrilateral is cyclic.
\Rightarrow WZPT is cyclic.
(2) $\because X, Z, T, Y$ lie on same circle, \therefore they are concyclic.
Q. 7. In figure 3.60, $m(\operatorname{arc} N S)=125^{\circ}, m(\operatorname{arc} E F)=37^{\circ}$, find the measure \angle NMS.

Fig. $\mathbf{3 . 6 0}$
Answer : Given $\mathrm{m}(\operatorname{arc} \mathrm{NS})=125^{\circ}, \mathrm{m}(\operatorname{arcEF})=37^{\circ}$
Also, \angle NMS is an external angle, so
$\angle N M S=\frac{1}{2}[m(\operatorname{arcNS})-m(\operatorname{arcEF})]$
$\Rightarrow \angle N M S=\frac{1}{2}\left[125^{\circ}-37^{\circ}\right]$
$\Rightarrow \angle N M S=\frac{1}{2} \times 88^{\circ}=44^{\circ}$
Q. 8. In figure 3.61, chords $A C$ and $D E$ intersect at B. If $\angle A B E=108^{\circ}, m(\operatorname{arc} A E)=$ 95°, find $m(\operatorname{arc} D C)$.

Fig. 3.61

Answer : Given $\angle A B E=108^{\circ}, m(\operatorname{arc} A E)=95^{\circ}$
Using the property of the secant,
$\angle A B E=\frac{1}{2}[m(\operatorname{arc} A E)+m(\operatorname{arc} D C)]$
$\Rightarrow 108^{\circ}=\frac{1}{2}\left[95^{\circ}+m(\operatorname{arc} D C)\right]$
$\Rightarrow \mathrm{m}(\operatorname{arc} \mathrm{DC})=108^{\circ} \times 2-95^{\circ}$
$\Rightarrow \mathrm{m}(\operatorname{arc} \mathrm{DC})=121^{\circ}$

Practice Set 3.5

Q. 1. In figure 3.77, ray $P Q$ touches the circle at point $Q . P Q=12, P R=8$, find $P S$ and RS.

Fig. 3.77

Answer : Given $\mathrm{PQ}=12, \mathrm{PR}=8$
$S P \times R P=P Q^{2}$
This property is known as tangent secant segments theorem.
$\Rightarrow \mathrm{PS} \times 8=12^{2}$
$\Rightarrow P S=\frac{144}{8}=18$
$R S=P S-R P=18-8=10$
Q. 2. In figure 3.78, chord MN and chord RS intersect at point D.
(1) If $R D=15, \mathrm{DS}=4, \mathrm{MD}=8$ find DN
(2) If $R S=18, M D=9, D N=8$ find $D S$

Fig. 3.78

Answer : (1) Given RD = 15, $\mathrm{DS}=4, \mathrm{MD}=8$
$M D \times D N=R D \times D S$
This property is known as theorem of chords intersecting inside the circle.
$\Rightarrow 8 \times \mathrm{DN}=15 \times 4$
$\Rightarrow D N=\frac{15}{2}=7.5$
(2) Given $\mathrm{RS}=18, \mathrm{MD}=9, \mathrm{DN}=8$

Here, RS = 18
Let $R D=x$ and $D S=18-x$
$M D \times D N=R D \times D S$
This property is known as theorem of chords intersecting inside the circle.
$\Rightarrow 8 \times 9=x \times(18-\mathrm{x})$
$\Rightarrow 18 x-x^{2}=72$
$\Rightarrow \mathrm{x}^{2}-18 \mathrm{x}+72=0$
$\Rightarrow(x-12)(x-6)=0$
$\Rightarrow \mathrm{x}=12$ or 6
\Rightarrow DS $=6$ or 12
Q. 3. In figure 3.79, O is the centre of the circle and B is a point of contact. seg $O E \perp \operatorname{seg} A D, A B=12, A C=8$, find

Fig. $3.79{ }^{\prime}$
(1) $A D$
(2) $D C$
(3) DE .

Answer: (1)Given: $O E \perp A D, A B=12, A C=8$
$\Rightarrow A D \times A C=A B^{2}$
This property is known as tangent secant segments theorem.
$\Rightarrow A D \times 8=12^{2}$
$\Rightarrow \mathrm{AD}=\frac{144}{8}=18$
(2) $\mathrm{DC}=\mathrm{AD}-\mathrm{AC}=18-8=10$
(3) As we know that a perpendicular from centre divides the chord in two equal parts. Here, $\mathrm{OE} \perp \mathrm{AD}$.
$\Rightarrow D E=E C$
$\Rightarrow D E+E C=D C$
$\Rightarrow 2 D E=D C$
$\Rightarrow \mathrm{DE}=\frac{1}{2} \mathrm{DC}=5$
Q. 4. In figure 3.80 , if $P Q=6, Q R=10, P S=8$ find $T S$.

Fig. 3.80

Answer : Given: $\mathrm{PQ}=6, \mathrm{QR}=10, \mathrm{PS}=8$
$P T \times P S=P R \times P Q$
This property is known as theorem of chords intersecting outside the circle.
$\Rightarrow P R=P Q+R Q=6+10=16$
$\Rightarrow \mathrm{PT} \times 8=16 \times 6$
$\Rightarrow \mathrm{PT}=12$
$\mathrm{TS}=\mathrm{PT}-\mathrm{PS}=12-8=4$
Q. 5. In figure 3.81, seg EF is a diameter and seg DF is a tangent segment. The radius of the circle is r. Prove that, $D E \times G E=4 r^{2}$

Fig. 3.81

Answer: In $\triangle D E F$,
$\angle D F E=90^{\circ}\{U$ sing tangent-radius theorem which states that a tangent at any point of a circle is perpendicular to the radius at the point of contact.\}

Given: $\mathrm{EF}=$ diameter of the circle.
$D E^{2}=D F^{2}+E F^{2}\{$ Using Pythagoras theorem $\}$
$\Rightarrow \mathrm{DE}^{2}=\mathrm{DF}^{2}+(2 r)^{2}$
$\Rightarrow D E^{2}=D F^{2}+4 r^{2}$
$\Rightarrow D F^{2}=D E^{2}-4 r^{2}$
Also, $\mathrm{DE} \times \mathrm{DG}=\mathrm{DF}^{2}$
This property is known as tangent secant segments theorem.
$\Rightarrow D E \times D G=D E^{2}-4 r^{2}$
$\Rightarrow D^{2}-D E \times D G=4 r^{2}$
$\Rightarrow D E(D E-D G)=4 r^{2}$
$\Rightarrow D E \times E G=4 r^{2}$
Hence, proved.

Problem Set 3

Q. 1. A. Four alternative answers for each of the following questions are given. Choose the correct alternative.

Two circles of radii 5.5 cm and 3.3 cm respectively touch each other. What is the distance between their centers?
A. 4.4 cm
B. 8.8 cm
C. 2.2 cm
D. 8.8 or 2.2 cm

Answer : Given that both the circles touch each other but not specified externally or internally.

The distance between the centres of the circles touching internally is equal to the difference of their radii.
\Rightarrow Distance between their centres $=5.5 \mathrm{~cm}-3.3 \mathrm{~cm}=2.2 \mathrm{~cm}$
If the circles touch each other externally, distance between their centres is equal to the sum of their radii.
\Rightarrow Distance between their centres $=5.5 \mathrm{~cm}+3.3 \mathrm{~cm}=8.8 \mathrm{~cm}$
Q. 1. B. Four alternative answers for each of the following questions are given. Choose the correct alternative.

Two circles intersect each other such that each circle passes through the centre of the other. If the distance between their centres is 12, what is the radius of each circle?
A. 6 cm
B. 12 cm
C. 24 cm
D. can't say

Answer: Given $\mathrm{OA}=12$

From the figure, $O A$ is the radius of both the circles.
Given that distance between their centres is $O A=12$
\therefore Radius of the circles $=12$
Q. 1. C. Four alternative answers for each of the following questions are given. Choose the correct alternative.

A circle touches all sides of a parallelogram. So the parallelogram must be a,.
A. rectangle
B. rhombus
C. square
D. trapezium

Answer :

Let ABCD be a parallelogram which circumscribes the circle.
$A P=A S[T a n g e n t s$ drawn from an external point to a circle are equal in length]
$B P=B Q[$ Tangents drawn from an external point to a circle are equal in length]
$C R=C Q[T a n g e n t s$ drawn from an external point to a circle are equal in length]
DR = DS [Tangents drawn from an external point to a circle are equal in length]
Consider, $(A P+B P)+(C R+D R)=(A S+D S)+(B Q+C Q)$
$A B+C D=A D+B C$
But $A B=C D$ and $B C=A D$ [Opposite sides of parallelogram $A B C D]$
$A B+C D=A D+B C$
Hence $2 A B=2 B C$
Therefore, $A B=B C$
Similarly, we get $A B=D A$ and $D A=C D$
Thus, $A B C D$ is a rhombus.
Q. 1. D. Four alternative answers for each of the following questions are given. Choose the correct alternative.

Length of a tangent segment drawn from a point which is at a distance 12.5 cm from the centre of a circle is $\mathbf{1 2} \mathbf{~ c m}$, find the diameter of the circle.
A. 25 cm
B. 24 cm
C. 7 cm
D. 14 cm

Answer :

Given: $B O=12.5 \mathrm{~cm}$ and $A B=12 \mathrm{~cm}$
In $\triangle \mathrm{AOB}$,
$\angle \mathrm{OAB}=90^{\circ}\{$ Using tangent-radius theorem which states that a tangent at any point of a circle is perpendicular to the radius at the point of contact.\}
$\mathrm{BO}^{2}=A \mathrm{~B}^{2}+\mathrm{OA}^{2}\{$ Using Pythagoras theorem $\}$
$\Rightarrow(12.5)^{2}=12^{2}+\mathrm{OA}^{2}$
$\Rightarrow \mathrm{OA}^{2}=156.25-144$
$\Rightarrow \mathrm{OA}=\sqrt{ } 12.25$
$\Rightarrow \mathrm{OA}=3.5 \mathrm{~cm}$
Radius $=3.5 \mathrm{~cm}$
\Rightarrow Diameter $=7 \mathrm{~cm}$
Q. 1. E. Four alternative answers for each of the following questions are given. Choose the correct alternative.
If two circles are touching externally, how many common tangents of them can be drawn?
A. One
B. Two
C. Three
D. Four

Answer :

If two circles are touching each other externally, they have 3 tangents in common. The above figure proves this statement.

There are three common tangents for the given two circles.
Q. 1. F. Four alternative answers for each of the following questions are given. Choose the correct alternative.
$\angle A C B$ is inscribed in arc ACB of a circle with centre 0 . If $\angle A C B=65^{\circ}$, find m (arc ACB).
A. 65°
B. 130°
C. 295°
D. 230°

Answer :

Given $\angle A C B=65^{\circ}$
$\Rightarrow \angle A O B=2 \times 65^{\circ}=130^{\circ}\{\because$ The measure of an inscribed angle is half the measure of the arc intercepted by it.\}
$m(A B)=130^{\circ}$
So, $\mathrm{m}(\operatorname{arc} \mathrm{ACB})=360^{\circ}-\mathrm{m}(\mathrm{AB})\left\{\because\right.$ Measure of a major arc $=360^{\circ}$ - measure of its corresponding minor arc\}
$\Rightarrow \mathrm{m}(\operatorname{arc} \mathrm{ACB})=360^{\circ}-130^{\circ}=230^{\circ}$
Q. 1. G. Four alternative answers for each of the following questions are given. Choose the correct alternative.

Chords $A B$ and $C D$ of a circle intersect inside the circle at point E. If $A E=5.6, E B=$ $10, C E=8$, find $E D$.
A. 7
B. 8
C. 11.2
D. 9

Answer :

Given: $\mathrm{AE}=5.6, \mathrm{~EB}=10, \mathrm{CE}=8$
We know that $\mathrm{AE} \times \mathrm{EB}=\mathrm{CE} \times \mathrm{ED}$
This property is known as theorem of chords intersecting inside the circle.
$\Rightarrow 5.6 \times 10=8 \times \mathrm{ED}$
$\Rightarrow \mathrm{ED}=7$
Q. 1. H. Four alternative answers for each of the following questions are given. Choose the correct alternative.
In a cyclic $\square \mathrm{ABCD}$, twice the measure of $\angle \mathrm{A}$ is thrice the measure of $\angle \mathrm{C}$. Find the measure of $\angle \mathrm{C}$?
A. 36
B. 72
C. 90
D. 108

Answer : Given that $2 \angle \mathrm{~A}=3 \angle \mathrm{C}$
We know that in a cyclic quadrilateral opposite angles are supplementary to each other.
$\Rightarrow \angle A+\angle C=180^{\circ}$
$\Rightarrow \frac{3}{2} \angle \mathrm{C}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow \frac{5}{2} \angle \mathrm{C}=180^{\circ}$
$\Rightarrow \angle \mathrm{C}=72^{\circ}$
Q. 1. I. Four alternative answers for each of the following questions are given. Choose the correct alternative.

Points A, B, C are on a circle, such that $m(\operatorname{arc} A B)=m(\operatorname{arc} B C)=120^{\circ}$. Nopoint, except point B, is common to the arcs. Which is the type of $\triangle A B C$?
A. Equilateral triangle
B. Scalene triangle
C. Right angled triangle
D. Isosceles triangle

Answer : Angle subtended by the arcs at centre $=120^{\circ}$
\Rightarrow Angle subtended by the arc at the remaining part of the circle $=60^{\circ}$ \{The measure of an inscribed angle is half the measure of the arc intercepted by it.\}
\because Interior angles of the triangle $\mathrm{ABC}=60^{\circ}$
\therefore It is an equilateral triangle.
Q. 1. J. Four alternative answers for each of the following questions are given. Choose the correct alternative.

Seg XZ is a diameter of a circle. Point Y lies in its interior. How many of the following statements are true?
(i) It is not possible that $\angle \mathrm{XYZ}$ is an acute angle.
(ii) $\angle X Y Z$ can't be a right angle.
(iii) $\angle \mathrm{XYZ}$ is an obtuse angle.
(iv) Can't make a definite statement for measure of $\angle X Y Z$.
A. Only one
B. Only two
C. Only three
D. All

Answer : If Y would have lied on circumference $\angle \mathrm{XYZ}=90^{\circ}$ since XZ is the diameter.

If Y lied outside the circle, $\angle \mathrm{XYZ}=$ acute angle

$\therefore \angle \mathrm{XYZ}$ is an obtuse angle.

Statements (i), (ii) and (iii) are true.
Q. 2. Line I touches a circle with centre Oat point P. If radius of the circle is 9 cm, answer the following.
(1) What is $\mathrm{d}(\mathrm{O}, \mathrm{P})=$? Why ?
(2) If $\mathrm{d}(\mathrm{O}, \mathrm{Q})=8 \mathrm{~cm}$, where does the point Q lie?
(3) If $d(P Q)=15 \mathrm{~cm}$, How many locations of point R are line online I ? At what distance will each of them be from point P?

Fig. 3.82
Answer : (1)The perpendicular distance of O from $P=$ radius of the circle $=9 \mathrm{~cm}$.
(2) Q lies in the interior of the circle because P lieing on the circumference of the circle is at a distance of 9 cm .
(3) Position of R is not specified.
Q. 3. In figure 3.83, M is the centre of the circle and seg KL is a tangent segment.

If $\mathbf{M K}=\mathbf{1 2}, \mathrm{KL}=6 \sqrt{3}$ then find -
(1) Radius of the circle.
(2) Measures of $\angle K$ and $\angle M$.

Fig. 3.83
Answer: (1) Here LM is the radius of the circle
$\Rightarrow \angle \mathrm{KML}=90^{\circ}$ Using tangent-radius theorem which states that a tangent at any point of a circle is perpendicular to the radius at the point of contact.

In triangle MLK right-angled at L ,
Given $M K=12, K L=6 \sqrt{ } 3$,
$\mathrm{MK}^{2}=\mathrm{LM}^{2}+\mathrm{KL}^{2}$ \{Using Pythagoras theorem $\}$
$\Rightarrow L M^{2}=12^{2}-6 \sqrt{3}{ }^{2}$
$\Rightarrow L^{2}=144-108$
$\Rightarrow L M=\sqrt{ } 36$
$\Rightarrow \mathrm{LM}=6 \mathrm{~cm}$
(2) $\tan \mathrm{K}=\frac{\mathrm{ML}}{\mathrm{LK}}$
$\Rightarrow \tan K=\frac{6}{6 \sqrt{3}}=\frac{1}{\sqrt{3}}=\tan 30^{\circ}$
$\Rightarrow \angle \mathrm{K}=30^{\circ}$
$\angle \mathrm{M}+\angle \mathrm{K}+\angle \mathrm{L}=180^{\circ}$ \{Angle sum property of the triangle\}
So, $\angle \mathrm{M}=180^{\circ}-\angle \mathrm{K}-\angle \mathrm{L}$
$\Rightarrow \angle \mathrm{M}=180^{\circ}-30^{\circ}-90^{\circ}=60^{\circ}$
Q. 4. In figure 3.84, O is the centre of the circle. Seg AB, seg $A C$ are tangent segments. Radius of the circle is r and $I(A B)=r$, Prove that, $\square A B O C$ is a square.

Fig. 3.84

Answer : Given: $A B=r=$ radius of the circle
Here, $A B=A C=r$ \{tangents from the same external point are equal\}
And $O B=O C=r=$ radius of the circle.
$\Rightarrow \angle \mathrm{OBA}=\angle \mathrm{OCA}=90^{\circ}$ Using tangent-radius theorem which states that a tangent at any point of a circle is perpendicular to the radius at the point of contact.
\because Sides of ABOC are equal and opposite angles are 90° each
Hence, $A B O C$ is a square.

Q. 5. In figure 3.85, $\square \mathrm{ABOC}$ is a parallelogram. It circumscribes the circle with cnetre T. Point E, F, G, H are touching points. If $A E=4.5, E B=5.5$, find $A D$.

Fig. 3.85

Answer : Given: $A E=4.5, E B=5.5$
Here, $\mathrm{AE}=\mathrm{AH}=4.5$ \{tangents from same external point are equal\}
$E B=B F=5.5\{$ tangents from same external point are equal\}
\because Opposite sides of a parallelogram are equal
$\therefore \mathrm{AE}=\mathrm{DG}$ and $\mathrm{EB}=\mathrm{GC}$

Also, $D H=D G=4.5\{$ tangents from same external point are equal\}
And FC $=\mathrm{GC}=5.5$ \{tangents from same external point are equal\}
$\Rightarrow A D=A H+H D=10$
Q. 6. In figure 3.86, circle with centre M touches the circle with centre N at point T . Radius RM touches the smaller circle at S. Radii of circles are 9 cm and 2.5 cm . Find the answers to the following questions hence find the ratio MS:SR.
(1) Find the length of segment MT
(2) Find the length of seg MN
(3) Find the measure of $\angle \mathrm{NSM}$.

Fig. 3.86
Answer : (1)MT = radius of the big circle $=9 \mathrm{~cm}$
(2) $\mathrm{MN}=\mathrm{MT}-\mathrm{TN}=9-2.5=6.5 \mathrm{~cm}$
(3) SM is the tangent to the circle with radius 2.5 cm with S being point of contact.
\angle NSM $=90^{\circ}$ Using tangent-radius theorem which states that a tangent at any point of a circle is perpendicular to the radius at the point of contact.

In $\triangle \mathrm{MSN}$,
$\angle \mathrm{MSN}=90^{\circ}\{\because \mathrm{MS}$ is the tangent to the small circle with point of contact S$\}$
$\Rightarrow \mathrm{MN}^{2}=\mathrm{MS}^{2}+\mathrm{NS}^{2}$
$\mathrm{MS}^{2}=\mathrm{MN}^{2}-\mathrm{NS}^{2}$
$\Rightarrow \mathrm{MS}^{2}=6.5^{2}-2.5^{2}$
$\Rightarrow \mathrm{MS}^{2}=36$
$\Rightarrow \mathrm{MS}=6 \mathrm{~cm}$

Now, $S R=M R-M S=9-6=3 \mathrm{~cm}$
$\Rightarrow \mathrm{MS}: \mathrm{SR}=6: 3=2: 1$
Q. 7. In the adjoining figure circles with centres X and Y touch each other at point Z. A secant passing through Z intersects the circles at points A and B respectively. Prove that, radius XA || radius YB. Fill in the blanks and complete the proof.

Fig. 3.87
Construction: Draw segments $X Z$ and ..YZ........ .
Proof: By theorem of touching circles, points $\mathrm{X}, \mathrm{Z}, \mathrm{Y}$ are ..concyclic.
$\therefore \angle \mathrm{XZA} \cong . . \angle \mathrm{YZB}$........vertically opposite angles
Let $\angle \mathrm{XZA}=\angle \mathrm{BZY}=\mathrm{a} \ldots .$. (I)
Now, seg $X A \cong \operatorname{seg} X Z$......... (...radius of the same circle.......)
$\therefore \angle \mathrm{XAZ}=\ldots . \angle \mathrm{XZA}=\mathrm{a}$. (isosceles triangle theorem) (II)
similarly, seg $\mathrm{YB} \cong . Y Z$. (.radius of the same circle \qquad
$\therefore \angle \mathrm{BZY}=. \angle \mathrm{ZBY}=\mathrm{a}$. (.isosceles triangle theorem.........)
\therefore from (I), (II), (III),
$\angle X A Z=. \angle Z B Y$. \qquad
\therefore radius $X A|\mid$ radius $Y B$ \qquad (..since alternate interior angles are equal........)

Answer : Construction: Draw segments XZ and YZ .
Proof: By theorem of touching circles, points $\mathrm{X}, \mathrm{Z}, \mathrm{Y}$ are concyclic.
$\angle \mathrm{xzA}=\angle \mathrm{YZB}$ \{vertically opposite angles\}
Let $\angle X Z A=\angle B Z Y=a(I)$

Now, seg $X A \cong \operatorname{seg} X Z$ (radius of the same circle)
$\because \angle X A Z=\angle X Z A=a$ (isosceles triangle theorem) (II)
Similarly, seg $\mathrm{YB} \cong \mathrm{YZ}$ (radius of the same circle)
$\therefore \angle \mathrm{BZY}=\angle \mathrm{ZBY}=\mathrm{a}$ (isosceles triangle theorem) (III)
:from (I), (II), (III),
$\angle X A Z=\angle Z B Y$
\therefore Radius $\mathrm{XA} \|$ radius YB (since alternate interior angles are equal)
Q. 8. In figure 3.88, circles with centres X and Y touch internally at point Z. Seg BZ is a chord of bigger circle and intersects smaller circle at point A. Prove that, seg AX || seg BY.

Fig. 3.88
Answer : $X A$ and $Y B$ are the radii of the respective circles.
$A Z$ and $B Z$ are the chords of the circles.
In triangle XAZ,
$\mathrm{AX}=\mathrm{XZ}\{$ Radii of the same circle $\}$
$\Rightarrow \angle \mathrm{XAZ}=\angle \mathrm{XZA}$ \{angles opposite to equal sides are equal\}
In triangle YBZ,
$\mathrm{YB}=\mathrm{YZ}\{$ Radii of the same circle $\}$
$\Rightarrow \angle \mathrm{YBZ}=\angle \mathrm{YZB}$ \{angles opposite to equal sides are equal\}
$\Rightarrow \angle X A Z=\angle X Z A=\angle Y B Z=\angle Y Z B$
\because Corresponding angles are equal
$\Rightarrow X A|\mid Y B$
Q. 9. In figure 3.89, line I touches the circle with centre O at point P. Q is the mid point of radius OP. RS is a chord through Q such that chords RS || line I. If RS = 12 find the radius of the circle.

Fig. 3.89
Answer : The radius of the circle will bisect the chord RS. Therefore, $R Q=Q S=1 / 2 \times$ $12=6$

Let the radius of circle be r ,
Now, in \triangle OQS, we have,
$R Q=6$
$O R=r$
$O Q=1 / 2 r$
Applying Pythagoras theorem, we get,

$$
r^{2}=\left(\frac{r}{2}\right)^{2}+(6)^{2}
$$

$$
r^{2}-\frac{r^{2}}{4}=36
$$

$\frac{3 r^{2}}{4}=36$
$3 r^{2}=4 \times 36$
$r^{2}=4 \times 12=48$
$r=\sqrt{ } 48$ units
Q. 10. In figure 3.90 , seg $A B$ is a diameter of a circle with centre C. Line $P Q$ is a tangent, which touches the circle at point T. seg $A P \perp$ line $P Q$ and seg $B Q \perp$ line $P Q$. Prove that, seg CP \cong seg CQ.

Fig. 3.90
Answer: To Prove: seg CP \cong seg CQ
Construction: Join CP, CQ and CT
Figure:

Since PQ is a tangent to the circle, $\angle \mathrm{CTP}=\angle \mathrm{CTQ}=90$
Since $\angle A P T=\angle C T P=90$
AP || CT.
Similarly,
CT || BQ.
So, we can say that,

AP || CT || BQ

$A B$ is a line cutting all three parallel lines.
$\mathrm{AC}=\mathrm{CB}$ (Radius of the circle, and AB is diameter, C is center)
Since C is center point of line $A B$ cutting parallel lines.
We can say these parallel lines are equal distance.
Therefore, $\mathrm{PT}=\mathrm{TQ}$.
Now in $\triangle C T P$ and $\triangle C T Q$,
CT is a common side, $\mathrm{PT}=\mathrm{TQ}$ and $\angle \mathrm{CTP}=\angle \mathrm{CTQ}=90$
$C P=C Q$. (Pythagoras theorem or congruent triangle theorem)
Hence, Proved.
Q. 11. Draw circles with centres A, B and C each of radius 3 cm , such that each circle touches the other two circles.

Answer :

Draw a circle with radius 3 and centred at A. Similarly draw other two circles with centre B and C and same radius touching each other externally.
Q. 12. Prove that any three points on a circle cannot be collinear.

Answer :

We draw a circle of any radius and take any three points A, B and C on the circle.
We join A to B and B to C.
We draw perpendicular bisectors of $A B$ and $B C$.
We know that perpendicular from the center bisects the chord.
Hence the center lies on both of the perpendicular bisectors.
The point where they intersect is the center of the circle.
The perpendiculars of the line segments drawn by joining collinear points is always parallel whereas in circle any three point's perpendicular bisector will always intersect at the center.

Hence, any three points on the circle cannot be collinear.
Q. 13. In figure 3.91, line PR touches the circle at point Q. Answer the following questions with the help of the figure.
(1) What is the sum of $\angle T A Q$ and $\angle T S Q$?
(2) Find the angles which are congruent to $\angle A Q P$.
(3) Which angles are congruent to $\angle Q T S$?
(4) \angle TAS $=65^{\circ}$, find the measure of \angle TQS and arc TS.
(5) If $\angle A Q P=42^{\circ}$ and $\angle S Q R=58^{\circ}$ find measure of $\angle A T S$.

Fig. 3.91
Answer : (1) As TAQS is a cyclic quadrilateral,
$\angle \mathrm{TAQ}+\angle \mathrm{TSQ}=180^{\circ}$ (Sum of opposite angles of a cyclic quadrilateral is 180°)
(2) \angle ASQ and $\angle \mathrm{ATQ}$
(3) \angle QAS and $\angle \mathrm{SQR}$
(4) $\angle \mathrm{TAS}=65^{\circ}$
$\angle \mathrm{TQS}=\angle \mathrm{TAS}=65^{\circ}$ (angle by same arc TS in the same sector)
$\mathrm{m}(\operatorname{arc} \mathrm{TS})=\angle \mathrm{TQS}+\angle \mathrm{TAS}$
$\Rightarrow m(\operatorname{arc} T S)=65+65=130^{\circ}$
(5) $\angle \mathrm{AQP}+\angle \mathrm{AQS}+\angle \mathrm{SQR}=180^{\circ}$
$\Rightarrow 42+\angle A Q S+58=180$
$\Rightarrow \angle A Q S+100=180$
$\Rightarrow \angle A Q S=80$
$\angle \mathrm{AQS}+\angle \mathrm{ATS}=180^{\circ}$ (opposite angles of a cyclic quadrilateral)
$\Rightarrow 80+\angle A T S=180$
$\Rightarrow \angle \mathrm{ATS}=100^{\circ}$
Q. 14. In figure 3.92, O is the centre of a circle, chord $\mathrm{PQ} \cong$ chord RS If $\angle \mathrm{POR}=$ 70° and $(\operatorname{arc} R S)=80^{\circ}$, find -
(1) m(arc PR)
(2) $m(\operatorname{arc}$ QS)
(3) $m(\operatorname{arc}$ QSR)

Fig. 3.92
Answer: $(1) \mathrm{m}(\operatorname{arc} \mathrm{PR})=\angle \mathrm{POR}=70^{\circ}$
(2) $\angle \mathrm{POQ}+\angle \mathrm{QOS}+\angle \mathrm{ROS}+\angle \mathrm{POR}=360^{\circ}$

As $P Q=R S, \angle P O Q=\angle R O S=80^{\circ}$
$\Rightarrow \angle \mathrm{POQ}+\angle \mathrm{QOS}+\angle \mathrm{ROS}+\angle \mathrm{POR}=360^{\circ}$
$\Rightarrow 80+\angle$ QOS $+80+\angle 70=360$
$\Rightarrow 230+\angle$ QOS $=360$
$\Rightarrow \angle Q O S=130^{\circ}$
$\mathrm{m}(\operatorname{arc} \mathrm{QS})=\angle \mathrm{QOS}=130^{\circ}$
(3) $\mathrm{m}(\operatorname{arc}$ QSR $)=\angle \mathrm{QOS}+\angle \mathrm{ROS}=130+80=210^{\circ}$
Q. 15. In figure 3.93, $\mathrm{m}(\operatorname{arc} \mathrm{WY})=44^{\circ}, \mathrm{m}(\operatorname{arc} \mathrm{ZX})=68^{\circ}$, then
(1) Find the measure of $\angle \mathrm{ZTX}$.
(2) If $\mathrm{WT}=4.8, \mathrm{TX}=8.0, \mathrm{YT}=6.4$, find TZ .
(3) If $\mathrm{WX}=25, \mathrm{YT}=8, \mathrm{YZ}=26$, find WT .

Fig. 3.93

Answer : (1)Given: $m(\operatorname{arc} W Y)=44^{\circ}, m(\operatorname{arc} Z X)=68^{\circ}$
We know that

$$
\begin{aligned}
& \angle \mathrm{ZTX}=\frac{1}{2}[\mathrm{~m}(\operatorname{arcZX})+\mathrm{m}(\operatorname{arcWX})] \\
& \Rightarrow \angle \mathrm{ZTX}=\frac{1}{2}\left(44^{\circ}+68^{\circ}\right)=56^{\circ}
\end{aligned}
$$

(2)Given: $\mathrm{WT}=4.8, \mathrm{TX}=8.0, \mathrm{YT}=6.4$

We know that $\mathrm{WT} \times \mathrm{TX}=\mathrm{YT} \times \mathrm{TZ}$ \{Using secant-tangent theorem $\}$
$\Rightarrow 6.4 \times \mathrm{TZ}=4.8 \times 8$
$\Rightarrow \mathrm{TZ}=6$
(3)Given: $\mathrm{WX}=25, \mathrm{YT}=8, \mathrm{YZ}=26$

Let $\mathrm{WT}=\mathrm{x}$ and $\mathrm{TX}=25-\mathrm{x}$
$W T \times T X=Y T \times T Z$
$\Rightarrow x(25-x)=8 \times 26$
$\Rightarrow(x-16)(x-9)=0$
$\Rightarrow W T=16$ or 9
Q. 16. In figure 3.94,
(1) $m(\operatorname{arc} C E)=54^{\circ}$,
$m(\operatorname{arc} B D)=23^{\circ}$, find measure of $\angle C A E$.
(2) If $A B=4.2, B C=5.4$,
$A E=12.0$, find $A D$
(3) If $A B=3.6, A C=9.0$,
$A D=5.4$, find $A E$

Fig. 3.94

Answer : (1)Given: $m(\operatorname{arc} C E)=54^{\circ}$,
$m(\operatorname{arcBD})=23^{\circ}$
$\angle C A E$ is an external angle.
$\angle \mathrm{CAE}=\frac{1}{2}[\mathrm{~m}(\operatorname{arcCE})-\mathrm{m}(\operatorname{arcBD})]$
$\angle \mathrm{CAE}=\frac{1}{2}\left[54^{\circ}-23^{\circ}\right]=15.5^{\circ}$
(2)Given: $A B=4.2, B C=5.4, A E=12.0$

Here, $A B \times A C=A D \times E A$
$\Rightarrow A D \times 12=4.2 \times 5.4$
$\Rightarrow A D=3.36$
(3) Given $\mathrm{AB}=3.6, \mathrm{AC}=9.0$,
$A D=5.4$
Here, $A B \times A C=A D \times E A$
$\Rightarrow \mathrm{AE} \times 5.4=3.6 \times 9$
$\Rightarrow A E=6$
Q. 17. In figure 3.95, chord EF || chord GH. Prove that, chord EG \cong chord FH .

Fill in the blanks and write the proof. Proof : Draw seg GF.
$\angle \mathrm{EFG}=\angle \mathrm{FGH} .$. Alternate interior angles....... \square (I)
$\angle \mathrm{EFG}=$ \qquad 90°......... .inscribed angle theorem\}(II)
$\angle \mathrm{FGH}=$ \qquad 90° \qquad \{inscribed angle theorem\} (III)
$\therefore \mathrm{m}(\operatorname{arc} \mathrm{EG})=$ \qquad 90° \qquad from (I), (II), (III). chord EG \cong chord FH \square

Fig. 3.95
Answer: Proof : Draw seg GF.
$\angle E F G=\angle F G H$ \{Alternate interior angles\} (I)
$\angle E F G=90^{\circ}$ \{inscribed angle theorem $\}$ (II)
$\angle \mathrm{FGH}=90^{\circ}$ \{inscribed angle theorem\} (III)
$\therefore \mathrm{m}(\operatorname{arc} \mathrm{EG})=90^{\circ}$ from (I), (II), (III).
Chord $\mathrm{EG} \cong$ chord FH \{Corresponding chords of congruent arcs of a circle (or congruent circles) are congruent\}
Q. 18. In figure 3.96 P is the point of contact.
(1) If $m(\operatorname{arc} P R)=140^{\circ}, \angle P O R=36^{\circ}$, find $m(\operatorname{arc} P Q)$
(2) If $\mathrm{OP}=7.2, \mathrm{OQ}=3.2$, find OR and QR
(3) If $O P=7.2, O R=16.2$,find $Q R$.

Fig. 3.96
Answer : (1) Given: $\mathrm{m}(\operatorname{arc} \mathrm{PR})=140^{\circ}, \angle \mathrm{POR}=36^{\circ}$
\angle ROP is an external angle.
$\angle \mathrm{ROP}=\frac{1}{2}[\mathrm{~m}(\operatorname{arcRP})-\mathrm{m}(\operatorname{arcPQ})]$
$\Rightarrow \mathrm{m}(\operatorname{arc} \mathrm{PQ})=140^{\circ}-2 \times 36^{\circ}$
$\Rightarrow m(\operatorname{arc} P Q)=68^{\circ}$
(2) Given: $\mathrm{OP}=7.2, \mathrm{OQ}=3.2$

Here, $\mathrm{RO} \times \mathrm{OQ}=\mathrm{OP}^{2}$
$\Rightarrow \mathrm{RO} \times 3.2=7.2 \times 7.2$
$\Rightarrow \mathrm{RO}=16.2$
$Q R=R O-O Q=16.2-3.2=13$
(3) Given: $\mathrm{OP}=7.2, \mathrm{OR}=16.2$

Here, $\mathrm{RO} \times \mathrm{OQ}=\mathrm{OP}^{2}$
$\Rightarrow 16.2 \times O Q=7.2 \times 7.2$
$\Rightarrow O Q=3.2$
$Q R=R O-O Q=16.2-3.2=13$
Q. 19. In figure 3.97, circles with centres C and D touch internally at point E. D lies on the inner circle. Chord EB of the outer circle intersects inner circle at point A. Prove that, seg EA \cong seg AB.

Fig. 3.97

Answer :

We see that the line joining D to E passes through C.
In the smaller circle,
A lies in the semicircle,
$\therefore \angle E A D=90^{\circ}$
$\Rightarrow D A$ is perpendicular on the chord EB of the bigger circle.
We know that perpendicular from the center bisects the chord.
Therefore, $\mathrm{EA}=\mathrm{AB}$.
Q. 20. In figure 3.98, seg $A B$ is a diameter of a circle with centre O. The bisector of $\angle A C B$ intersects the circle at point D. Prove that, seg $A D \cong s e g B D$.

Fig. 3.98
Complete the following proof by filling in the blanks. Proof: Draw seg OD.
$\angle \mathrm{ACB}=\square \ldots 90^{\circ} \ldots$. angle inscribed in semicircle
$\angle \mathrm{DCB}=\square \ldots . . .45^{\circ} \ldots . \mathrm{CD}$ is the bisector of $\angle \mathrm{C}$
$\mathrm{m}(\operatorname{arc} \mathrm{DB})=\square . \ldots45^{\circ}$.. inscribed angle theorem
$\angle \mathrm{DOB}=\square \ldots90^{\circ}$ definition of measure of an arc (I) seg $O A \cong$ seg $O B$.......radii of the circle... \square (II) \therefore line $O D$ is \square of seg $A B$......bisector.... From (I) and (II) $\therefore \operatorname{seg} A D \cong \operatorname{seg} B D$

Answer: Proof: Draw seg OD.
$\angle \mathrm{ACB}=90^{\circ}$ \{angle inscribed in semicircle $\}$
$\angle \mathrm{DCB}=45^{\circ}\{\mathrm{CD}$ is the bisector of $\sqrt{C}\}$
$\mathrm{m}(\operatorname{arc} \mathrm{DB})=45^{\circ}$ \{inscribed angle theorem $\}$
$\angle \mathrm{DOB}=90^{\circ}$ \{definition of measure of an arc\} (I)
seg $\mathrm{OA} \cong$ seg OB \{radii of the circle\}(II)
\therefore.line OD is bisector of seg AB From (I) and (II)
\therefore seg $A D \cong \operatorname{seg} B D$
Q. 21. In figure 3.99, seg $M N$ is a chord of a circle with centre $O . M N=25, L$ is a point on chord $M N$ such that $M L=9$ and $d(O, L)=5$.

Find the radius of the circle.

Fig. 3.99
Answer : The figure is shown below:

Draw perpendicular on MN from the center O .
Mark the point as A . Join O to N .
As we know that perpendicular on a chord bisects the chord.
AM $=\mathrm{MN} / 2$
$\Rightarrow A M=25 / 2=12.5$
Given that $\mathrm{LM}=9$
$\Rightarrow L M+L A=A M$
$\Rightarrow 9+\mathrm{LA}=12.5$
$\Rightarrow L A=3.5$

In Δ OAL,
$\Rightarrow \mathrm{OL}^{2}=\mathrm{OA}^{2}+\mathrm{AL}^{2}$
$\Rightarrow 5^{2}=\mathrm{OA}^{2}+(3.5)^{2}$
$\Rightarrow \mathrm{OA}^{2}=25-12.25$
$\Rightarrow \mathrm{OA}^{2}=12.75$
In \triangle OAN,
$\Rightarrow \mathrm{ON}^{2}=\mathrm{OA}^{2}+\mathrm{AN}^{2}$
$\Rightarrow \mathrm{ON}^{2}=12.75+(12.5)^{2}$
$\Rightarrow \mathrm{ON}^{2}=12.75+156.25$
$\Rightarrow \mathrm{ON}^{2}=169$
$\Rightarrow \mathrm{ON}=13$
Therefore, the radius of the circle is 13 .
Q. 22. In figure 3.100, two circles intersect each other at points S and R. Their common tangent PQ touches the circle at points P, Q.

Prove that, $\angle P R Q+\angle P S Q=180^{\circ}$

Fig. 3.100

Answer: We join R to S,

Fig. 3.100

As PQ is the tangent at P , we have
$\angle R P Q=\angle P S R$
As $P Q$ is tangent at Q , we have
$\angle R Q P=\angle R S Q$

In $\triangle R P Q$, we have
$\Rightarrow \angle \mathrm{RPQ}+\angle \mathrm{RQP}+\angle \mathrm{PRQ}=180^{\circ}$ (Sum of all angles of a triangle)
$\Rightarrow \angle \mathrm{PSR}+\angle \mathrm{RSQ}+\angle \mathrm{PRQ}=180^{\circ}($ From (1) and (2) $)$
$\Rightarrow \angle \mathrm{PSQ}+\angle \mathrm{PRQ}=180^{\circ}(\angle \mathrm{PSR}+\angle \mathrm{RSQ}=\angle \mathrm{PSQ})$
Hence Proved.
Q. 23. In figure 3.101, two circles intersect at points M and N. Secants drawn through M and N intersect the circles at points R, S and P, Q respectively.

Prove that :seg SQ || seg RP.

Fig. 3.101

Answer :

We join MN.
As PRMN is a cyclic quadrilateral,
$\angle \mathrm{R}+\angle \mathrm{PNM}=180^{\circ} \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ (1) (opposite angles of a cyclic quadrilateral)
Also, QSMN is a cyclic quadrilateral,
$\angle S+\angle \mathrm{QNM}=180^{\circ}$
(2) (opposite angles of a cyclic quadrilateral)

Adding (1) and (2)
$\angle \mathrm{R}+\angle \mathrm{S}+\angle \mathrm{PNM}+\angle \mathrm{QNM}=360^{\circ}$
$\Rightarrow \angle R+\angle S+180=360(P Q$ is a straight line $)$
$\Rightarrow \angle \mathrm{R}+\angle \mathrm{S}=180^{\circ}$
Similarly we have,
As PRMN is a cyclic quadrilateral,
$\angle \mathrm{P}+\angle \mathrm{RMN}=180^{\circ}$ \qquad (3) (opposite angles of a cyclic quadrilateral)

Also, QSMN is a cyclic quadrilateral,
$\angle \mathrm{Q}+\angle \mathrm{SMN}=180^{\circ}$
(4) (opposite angles of a cyclic quadrilateral)

Adding (3) and (4)
$\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{RMN}+\angle \mathrm{SMN}=360^{\circ}$
$\Rightarrow \angle P+\angle Q+180=360$ (RS is a straight line)
$\Rightarrow \angle P+\angle Q=180^{\circ}$

Therefore, PR || SQ.
Q. 24. In figure 3.102, two circles intersect each other at points A and E. Their common secant through E intersects the circles at points B and D. The tangents of the circles at points Band D intersect each other at point C.

Prove that \square ABCD is cyclic.

Fig. 3.102
Answer : We join A to B and A to D and A to E

As $B C$ is a tangent at B, we have
$\angle \mathrm{CBD}=\angle \mathrm{BAE}$
As $C D$ is a tangent at D, we have
$\angle \mathrm{CDB}=\angle \mathrm{DAE}$
In $\triangle B C D$, we have
$\Rightarrow \angle \mathrm{CBD}+\angle \mathrm{CDB}+\angle \mathrm{BCD}=180^{\circ}$ (Sum of all angles of a triangle)
$\Rightarrow \angle \mathrm{BAE}+\angle \mathrm{DAE}+\angle \mathrm{BCD}=180^{\circ}($ From (1) and (2))
$\Rightarrow \angle \mathrm{BAD}+\angle \mathrm{BCD}=180^{\circ}(\angle \mathrm{BAE}+\angle \mathrm{DAE}=\angle \mathrm{BAD})$
In quadrilateral $A B C D$,
We have $\angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}$ (Proved above)
$\Rightarrow \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}=360^{\circ}$
$\Rightarrow \angle B+\angle D+180=360$
$\Rightarrow \angle B+\angle D=180$
Therefore, opposite angles of the quadrilateral sum to 180 . Hence $A B C D$ is a cyclic quadrilateral.
Q. 25. In figure 3.103, seg $A D \perp$ side $B C$, seg $B E \perp$ side $A C$, seg $C F \perp$ side $A B$. Point O is the orthocentre. Prove that, point O is the incentre of $\triangle D E F$.

Fig. 3.103

Answer :

Join D to E, D to F and E to F.
In $\triangle \mathrm{ABE}$,
$\Rightarrow \angle \mathrm{ABE}+\angle \mathrm{BAE}+\angle \mathrm{BEA}=180^{\circ}$ (Sum of all angles of a triangle)
$\Rightarrow \angle \mathrm{ABE}+\angle \mathrm{BAE}+90=180$
$\Rightarrow \angle A B E+\angle B A E=90$
$\Rightarrow \angle \mathrm{ABO}+\angle \mathrm{BAC}=90$
$\Rightarrow \angle A B O=90-\angle B A C$
In quadrilateral BFOD, we have
We have $\angle F=90, \angle D=90$
$\Rightarrow \angle B+\angle F+\angle O+\angle D=360^{\circ}$
$\Rightarrow \angle B+\angle O+180=360$
$\Rightarrow \angle \mathrm{B}+\angle \mathrm{O}=180$
Therefore, BFOD is a cyclic quadrilateral.
$\angle \mathrm{FBO}=\angle \mathrm{FDO}$ (angle by the same arc)
$\Rightarrow \angle \mathrm{ABO}=\angle \mathrm{FDO}$
From (1),
$\Rightarrow \angle \mathrm{FDO}=90-\angle \mathrm{BAC}$
In \triangle AFC,
$\Rightarrow \angle \mathrm{CAF}+\angle \mathrm{FCA}+\angle \mathrm{AFC}=180^{\circ}$ (Sum of all angles of a triangle)
$\Rightarrow \angle \mathrm{CAF}+\angle \mathrm{FCA}+90=180$
$\Rightarrow \angle \mathrm{CAF}+\angle \mathrm{FCA}=90$
$\Rightarrow \angle B A C+\angle O C E=90$
$\Rightarrow \angle O C E=90-\angle B A C$

In quadrilateral CEOD, we have
We have $\angle E=90, \angle D=90$
$\Rightarrow \angle \mathrm{C}+\angle \mathrm{E}+\angle \mathrm{O}+\angle \mathrm{D}=360^{\circ}$
$\Rightarrow \angle C+\angle O+180=360$
$\Rightarrow \angle \mathrm{C}+\angle \mathrm{O}=180$

Therefore, CEOD is a cyclic quadrilateral.
\angle ODE $=\angle$ OCE (angle by the same arc)
From (3),
$\Rightarrow \angle \mathrm{ODE}=90-\angle \mathrm{BAC}$
From (2) and (4) we conclude,
$\angle \mathrm{FDO}=\angle \mathrm{ODE}$
OD bisects $\angle \mathrm{D}$.
Similarly, we can prove that OE bisects $\angle \mathrm{E}$ and OF bisects $\angle \mathrm{F}$.
Hence O is the incenter of $\triangle D E F$.

