Practice Set 4.1

Q. 1. \triangle ABC ~ \triangle LMN. In \triangle ABC, AB = 5.5 cm, BC = 6 cm, CA = 4.5 cm.

Construct $\triangle ABC$ and $\triangle LMN$ such that $\frac{BC}{MN} = \frac{5}{4}$.

Answer : First we draw a triangle ABC, with AB = 5.5 cm, BC = 6 cm and CA = 4.5 cm

∴ corresponding sides will have same ratio

Now, as
$$\frac{BC}{MN} = \frac{5}{4}$$

 $\Rightarrow \frac{AB}{LM} = \frac{BC}{MN} = \frac{AC}{LN} = \frac{5}{4}$
 $\Rightarrow \frac{5.5}{LM} = \frac{5}{4}$
 $\Rightarrow LM = 4.4 \text{ cm}$
 $\Rightarrow \frac{6}{MN} = \frac{5}{4}$
 $\Rightarrow MN = 4.8 \text{ cm}$

$$\Rightarrow \frac{4.5}{LN} = \frac{5}{4}$$

 \Rightarrow LN = 3.6 cm

Now, make a Δ LMN, with LM = 4.4 cm, MN = 4.8 cm and LN = 3.6 cm

Q. 2. \triangle PQR ~ \triangle LTR. In \triangle PQR, PQ = 4.2 cm, QR = 5.4 cm, PR = 4.8 cm. Construct \triangle PQR and \triangle LTR, such that $\frac{PQ}{LT} = \frac{3}{4}$.

Answer : Steps of construction:

i. Draw a triangle PQR, with PQ = 4.2 cm, QR = 5.4 cm and PR = 4.8 cm, choosing QR = 5.4 cm as base.

ii. Below QR, draw an acute angle \angle QRX.

iii. Mark four points R_1 , R_2 , R_3 and R_4 on RX, such that $RR_1 = R_1R_2 = R_2R_3 = R_3R_4$. [As ratio is 4:3, we choose 4 points]

iv. Join QR4 and Draw TR3 || QR4

v. Draw LT || PQ.

Q. 3. \triangle RST ~ \triangle XYZ. In \triangle RST, RS = 4.5 cm, \angle RST = 40°, ST = 5.7 cm. Construct \triangle RST and \triangle XYZ, such that $\frac{RS}{XY} = \frac{3}{5}$.

Answer : First we draw a triangle RST, with RS = 4.5 cm, \angle RST = 40° cm and ST = 5.7 cm

Now, as $\triangle RST$ is similar to $\triangle XYZ$,

: corresponding sides will have same ratio

Now, as $\frac{RS}{XY} = \frac{3}{5}$ $\Rightarrow \frac{RS}{XY} = \frac{ST}{YZ} = \frac{TR}{ZX} = \frac{3}{5}$ $\Rightarrow \frac{4.5}{XY} = \frac{3}{5}$ $\Rightarrow XY = 7.5 \text{ cm}$ $\Rightarrow \frac{5.7}{YZ} = \frac{3}{5}$

 \Rightarrow YZ = 9.5 cm

Also, Corresponding angles of similar triangles are equal

$$\Rightarrow \angle RST = \angle XYZ = 40^{\circ}$$

Now, draw a triangle XYZ, with XY = 7.5 cm, \angle XYZ = 40° cm and YZ = 9.5 cm.

Answer : Steps of construction:

i. Draw a triangle AMT, with AM = 6.3 cm, \angle TAM = 50° cm and AT = 5.6 cm, choosing AM as base.

ii. Below AM, draw an acute angle ∠MAX.

iii. Mark four points A₁, A₂, A₃, A₄, A₅, A₆ and A₇ on AX, such that $AA_1 = A_1A_2 = ... = A_6A_7$ [As ratio is 7:5, we choose 7 points]

iv. Join MA7 and Draw HA5 || MA7

v. Draw HE || MT

Practice Set 4.2

Q. 1. Construct a tangent to a circle with centre P and radius 3.2 cm at any point M on it.

Answer : Steps of construction:

- i. Draw a circle with center P and radius 3.2 cm
- ii. Take a point M on the circle, Join PM.

iii. Draw AB \perp PM such that AB passes through M, AB is required tangent.

Q. 2. Draw a circle of radius 2.7 cm. Draw a tangent to the circle at any point on it.

Answer : Steps of construction:

- i. Draw a circle with center P and radius 2.7 cm
- ii. Take a point M on the circle, Join PM.

iii. Draw $AB \perp PM$ such that AB passes through M, AB is required tangent.

Q. 3. Draw a circle of radius 3.6 cm. Draw a tangent to the circle at any point on it without using the centre.

Answer : i. Draw a circle of radius 3.6 cm. Take any point C on it.

ii. Draw chord CB and an inscribed \angle CAB.

iii. With the centre A and any convenient radius draw an arc intersecting the sides of $\angle BAC$ in points M and N.

iv. Using the same radius and centre C, draw an arc intersecting the chord CB at point R.

v. Taking the radius equal to d(MN) and centre R, draw an arc intersecting the arc drawn in the previous step. Let D be the point of intersection of these arcs. Draw line CD. Line CD is the required tangent to the circle.

Q. 4. Draw a circle of radius 3.3 cm Draw a chord PQ of length 6.6 cm. Draw tangents to the circle at points P and Q. Write your observation about the tangents.

Answer : Here chord = $6.6 = 2 \times 3.3$ cm = $2 \times$ radius, hence PQ is diameter of the circle.

Steps of construction:

i. Draw a circle with center O, and radius 3.3 cm

ii. Draw a diameter PQ passing through center.

iii. Draw AB \perp OQ and CD \perp OP, such that AB and CD pass through Q and P respectively.

iv. AB and CD are required tangents.

Observation: AB || CD, i.e. tangents at opposite ends of diameter are parallel.

Q. 5. Draw a circle with radius 3.4 cm. Draw a chord MN of length 5.7 cm in it. Construct tangents at point M and N to the circle.

Answer : Steps of construction:

i. Draw an isosceles triangle OMN, with OM = ON = 3.4 cm and MN = 5.7 cm as base.

ii. Taking O as center, and OM or ON as radius, draw a circle.

iii. Draw AB \perp OM and CD \perp ON, such that AB and CD pass through M and N respectively.

iv. AB and CD are required tangents and intersects each other at P.

Q. 6. Draw a circle with centre P and radius 3.4 cm. Take point Q at a distance 5.5 cm from the centre. Construct tangents to the circle from point Q.

Answer : Steps of construction:

i. Draw a circle with center P and radius 3.4 cm.

ii. Take a point Q outside the circle such that PQ = 5.5 cm

iii. Draw the perpendicular bisector of PQ, which bisects PQ at O.

iv. Taking O as center and OP = OQ as radius, draw another circle, which intersects the previous circle at A and B.

v. Join AQ and BQ, which are required tangents.

Q. 7. Draw a circle with radius 4.1 cm. Construct tangents to the circle from a point at a distance 7.3 cm from the centre.

Answer : Steps of construction:

i. Draw a circle with center P and radius 4.1 cm.

ii. Take a point Q outside the circle such that PQ = 7.3 cm

iii. Draw the perpendicular bisector of PQ, which bisects PQ at O.

iv. Taking O as center and OP = OQ as radius, draw another circle, which intersects the previous circle at A and B.

v. Join AQ and BQ, which are required tangents.

