Geometric Constructions

Practice Set 4.1

Q. 1. $\Delta \mathrm{ABC} \sim \Delta \mathrm{LMN}$. $\ln \Delta \mathrm{ABC}, \mathrm{AB}=5.5 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}, \mathrm{CA}=4.5 \mathrm{~cm}$.

Construct $\triangle A B C$ and $\triangle L M N$ such that $\frac{B C}{M N}=\frac{5}{4}$.
Answer : First we draw a triangle $A B C$, with $A B=5.5 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and $C A=4.5 \mathrm{~cm}$

Now, as $\triangle A B C$ is similar to $\triangle L M N$
\therefore corresponding sides will have same ratio
Now, as $\frac{\mathrm{BC}}{\mathrm{MN}}=\frac{5}{4}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{LM}}=\frac{\mathrm{BC}}{\mathrm{MN}}=\frac{\mathrm{AC}}{\mathrm{LN}}=\frac{5}{4}$
$\Rightarrow \frac{5.5}{\mathrm{LM}}=\frac{5}{4}$
$\Rightarrow \mathrm{LM}=4.4 \mathrm{~cm}$
$\Rightarrow \frac{6}{\mathrm{MN}}=\frac{5}{4}$
$\Rightarrow \mathrm{MN}=4.8 \mathrm{~cm}$
$\Rightarrow \frac{4.5}{\mathrm{LN}}=\frac{5}{4}$
$\Rightarrow \mathrm{LN}=3.6 \mathrm{~cm}$
Now, make a $\Delta L M N$, with $L M=4.4 \mathrm{~cm}, \mathrm{MN}=4.8 \mathrm{~cm}$ and $\mathrm{LN}=3.6 \mathrm{~cm}$

Q. 2. $\Delta \mathrm{PQR} \sim \Delta \mathrm{LTR}$. $\operatorname{In} \Delta \mathrm{PQR}, \mathrm{PQ}=4.2 \mathrm{~cm}, \mathrm{QR}=5.4 \mathrm{~cm}, \mathrm{PR}=4.8 \mathrm{~cm}$.

Construct \triangle PQR and $\Delta L T R$, such that $\frac{\mathrm{PQ}}{\mathrm{LT}}=\frac{3}{4}$.
Answer : Steps of construction:
i. Draw a triangle $P Q R$, with $P Q=4.2 \mathrm{~cm}, \mathrm{QR}=5.4 \mathrm{~cm}$ and $P R=4.8 \mathrm{~cm}$, choosing QR $=5.4 \mathrm{~cm}$ as base.

ii. Below $Q R$, draw an acute angle $\angle Q R X$.

iii. Mark four points R_{1}, R_{2}, R_{3} and R_{4} on $R X$, such that $R R_{1}=R_{1} R_{2}=R_{2} R_{3}=R_{3} R_{4}$. [As ratio is $4: 3$, we choose 4 points]

iv. Join $Q R_{4}$ and Draw $T_{3} \| R_{4}$

v. Draw LT || PQ.

Q. 3. $\Delta \mathrm{RST} \sim \Delta \mathrm{XYZ}$. $\ln \Delta \mathrm{RST}, \mathrm{RS}=4.5 \mathrm{~cm}, \angle \mathrm{RST}=40^{\circ}, \mathrm{ST}=5.7 \mathrm{~cm}$.

Construct Δ RST and $\Delta X Y Z$, such that $\frac{\mathrm{RS}}{\mathrm{XY}}=\frac{3}{5}$.

Answer : First we draw a triangle RST, with $\mathrm{RS}=4.5 \mathrm{~cm}, \angle \mathrm{RST}=40^{\circ} \mathrm{cm}$ and $\mathrm{ST}=5.7$ cm

Now, as $\triangle R S T$ is similar to $\triangle X Y Z$,
\therefore corresponding sides will have same ratio
Now, as $\frac{\mathrm{RS}}{\mathrm{XY}}=\frac{3}{5}$
$\Rightarrow \frac{\mathrm{RS}}{\mathrm{XY}}=\frac{\mathrm{ST}}{\mathrm{YZ}}=\frac{\mathrm{TR}}{\mathrm{ZX}}=\frac{3}{5}$
$\Rightarrow \frac{4.5}{X Y}=\frac{3}{5}$
$\Rightarrow X Y=7.5 \mathrm{~cm}$
$\Rightarrow \frac{5.7}{Y Z}=\frac{3}{5}$
$\Rightarrow \mathrm{YZ}=9.5 \mathrm{~cm}$
Also, Corresponding angles of similar triangles are equal
$\Rightarrow \angle \mathrm{RST}=\angle \mathrm{XYZ}=40^{\circ}$
Now, draw a triangle $X Y Z$, with $X Y=7.5 \mathrm{~cm}, \angle X Y Z=40^{\circ} \mathrm{cm}$ and $Y Z=9.5 \mathrm{~cm}$.

Q. 4. \triangle AMT $\sim \Delta$ AHE. $\operatorname{In} \triangle \mathrm{AMT}, \mathrm{AM}=6.3 \mathrm{~cm}, \angle \mathrm{TAM}=50^{\circ}, \mathrm{AT}=5.6 \mathrm{~cm} \cdot \frac{A M}{A H}=\frac{7}{5}$. Construct \triangle AHE.

Answer : Steps of construction:
i. Draw a triangle AMT , with $\mathrm{AM}=6.3 \mathrm{~cm}, \angle \mathrm{TAM}=50^{\circ} \mathrm{cm}$ and $\mathrm{AT}=5.6 \mathrm{~cm}$, choosing AM as base.

ii. Below AM, draw an acute angle $\angle \mathrm{MAX}$.

iii. Mark four points $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}$ and A_{7} on $A X$, such that $A A_{1}=A_{1} A_{2}=\ldots=$ $A_{6} A_{7}$ [As ratio is 7:5, we choose 7 points]

iv. Join $M A_{7}$ and Draw $H A_{5}| | ~ M A_{7}$

v. Draw HE || MT

Practice Set 4.2
Q. 1. Construct a tangent to a circle with centre P and radius 3.2 cm at any point M on it.

Answer : Steps of construction:
i. Draw a circle with center P and radius 3.2 cm
ii. Take a point M on the circle, Join PM.

iii. Draw $A B \perp P M$ such that $A B$ passes through $M, A B$ is required tangent.

Q. 2. Draw a circle of radius 2.7 cm . Draw a tangent to the circle at any point on it. Answer : Steps of construction:
i. Draw a circle with center P and radius 2.7 cm
ii. Take a point M on the circle, Join PM.

iii. Draw $A B \perp P M$ such that $A B$ passes through $M, A B$ is required tangent.

Q. 3. Draw a circle of radius 3.6 cm . Draw a tangent to the circle at any point on it without using the centre.

Answer : i. Draw a circle of radius 3.6 cm . Take any point C on it.

ii. Draw chord CB and an inscribed $\angle \mathrm{CAB}$.

iii. With the centre A and any convenient radius draw an arc intersecting the sides of $\angle B A C$ in points M and N.

iv. Using the same radius and centre C , draw an arc intersecting the chord CB at point R.

v. Taking the radius equal to $\mathrm{d}(\mathrm{MN})$ and centre R, draw an arc intersecting the arc drawn in the previous step. Let D be the point of intersection of these arcs. Draw line $C D$. Line $C D$ is the required tangent to the circle.
Q. 4. Draw a circle of radius 3.3 cm Draw a chord PQ of length 6.6 cm . Draw tangents to the circle at points \mathbf{P} and \mathbf{Q}. Write your observation about the tangents.

Answer: Here chord $=6.6=2 \times 3.3 \mathrm{~cm}=2 \times$ radius, hence $P Q$ is diameter of the circle.

Steps of construction:
i. Draw a circle with center O, and radius 3.3 cm

ii. Draw a diameter PQ passing through center.

iii. Draw $A B \perp O Q$ and $C D \perp O P$, such that $A B$ and $C D$ pass through Q and P respectively.

iv. $A B$ and $C D$ are required tangents.

Observation: $A B \| C D$, i.e. tangents at opposite ends of diameter are parallel.

Q. 5. Draw a circle with radius 3.4 cm . Draw a chord MN of length 5.7 cm in it. Construct tangents at point \mathbf{M} and N to the circle.

Answer: Steps of construction:
i. Draw an isosceles triangle OMN , with $\mathrm{OM}=\mathrm{ON}=3.4 \mathrm{~cm}$ and $\mathrm{MN}=5.7 \mathrm{~cm}$ as base.

ii. Taking O as center, and OM or ON as radius, draw a circle.

iii. Draw $A B \perp O M$ and $C D \perp O N$, such that $A B$ and $C D$ pass through M and N respectively.

iv. $A B$ and $C D$ are required tangents and intersects each other at P.
Q. 6. Draw a circle with centre P and radius 3.4 cm . Take point Q at a distance 5.5 cm from the centre. Construct tangents to the circle from point Q.

Answer : Steps of construction:
i. Draw a circle with center P and radius 3.4 cm .

ii. Take a point Q outside the circle such that $P Q=5.5 \mathrm{~cm}$

iii. Draw the perpendicular bisector of $P Q$, which bisects $P Q$ at O.

iv. Taking O as center and $O P=O Q$ as radius, draw another circle, which intersects the previous circle at A and B.

v. Join $A Q$ and $B Q$, which are required tangents.

Q. 7. Draw a circle with radius 4.1 cm . Construct tangents to the circle from a point at a distance 7.3 cm from the centre.

Answer : Steps of construction:
i. Draw a circle with center P and radius 4.1 cm .

ii. Take a point Q outside the circle such that $P Q=7.3 \mathrm{~cm}$

iii. Draw the perpendicular bisector of $P Q$, which bisects $P Q$ at O.

iv. Taking O as center and $\mathrm{OP}=\mathrm{OQ}$ as radius, draw another circle, which intersects the previous circle at A and B.

v. Join $A Q$ and $B Q$, which are required tangents.

